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Quantum Advantage?
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In 2019, Google claimed quantum advantage by solving a sampling problem: 200s on 
Sycamore vs  estimated 10k years on Summit
In 2020, Hefei National Lab, China, measured advantage on another sampling using a 
photonic computer 

https://www.nature.com/articles/s41586-019-1666-5

https://www.nature.com/articles/d41586-020-03434-7

Quantum supremacy refers to quantum computers that  
”.. can do things that classical computers can’t, 
regardless of whether those tasks are useful.”  (John 
Preskill, Caltech)

Practical quantum advantage
”Solve a problem that is useful either for academia or industry 
faster or better than any known classical algorithm on the 
best classical computer” (M. Troyer, Microsoft) 

https://www.nature.com/articles/s41586-019-1666-5


Quantum promise…

• Exponential speedup on complex algorithms
• Efficient sampling, searches and optimization
• Linear algebra, matrices and machine learning

• New algorithms/methods for  cryptography and 
communication

• Direct simulation of quantum systems
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Complexity and
Quantum Computing
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… and the challenges

• Noisy Intermediate-Scale Quantum devices
• Limitations in terms of stability and connectivity
• De-coherence, measurement errors or gate level errors 

(noise)
• Need specific error mitigation techniques
• Circuit optimisation
• Prefer algorithms that are more robust against noise 

(variational approaches, quantum machine learning, …) 

• Quantum computers initially integrated in hybrid 
quantum-classical infrastructure
• Engineering, cooling, I/O
• Hybrid algorithms, QPU as accelerators
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Image: D-Wave tutorial

Peruzzo, A. "A variational eigenvalue solver on a quantum processor. 
eprint." arXiv preprint arXiv:1304.3061 (2013).



Quantum Algorithms
A collection on http://quantumalgorithmzoo.org

• Multiple algorithms have been studied
• Shor algorithm for prime factorization
• Grover algorithm for unsorted DB searches
• Quantum Fourier Transform
• …

• Quantum-inspired algorithms (emulate quantum effects 
on classical hardware)

• Quantum Machine Learning
• Challenge is re-thinking algorithms design and define 

fair benchmarking and comparison to classical algorithms
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image from ISC 2021  keynote , M. Troyer

Image by Frank Zickert

https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm

Shor’s

Grover’s



Quantum Computing at CERN 

• QC is one of the four research areas in the CERN QTI

• Understand which applications can profit from quantum algorithms
• Choose representative use cases
• Understand challenges and limitations (on NISQ and fault tolerant hardware)
• Optimize quantum algorithms

• Quantum Machine Learning algorithms are a primary candidate for 
investigation

• Increasing use of ML in many computing and data analysis flows
• Can be built as hybrid models where quantum computers act as accelerators
• Efficient data handling is a challenge
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Quantum circuits are differentiable and can be trained minimizing a cost function that depends on 
the training data
Use Quantum Computing to accelerate ML/DL. Need to address several points:

1. Feature extraction and data encoding
• How do we represent classical data in quantum states?

2. Model definition (kernel based or variational)
• The role of non-linearities?
• Choice wrt data

3. Optimisation and convergence
• How to reach convergence in the Hilbert space
• Barren plateau and vanishing gradients
• Gradient-free or gradient-based optimisers 
• (Back-propagation, automatic differentiation,..)
• …

Quantum Machine Learning
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Image credit Qiskit.org/textbook

Different tools can enable hybrid computations



Dimensionality reduction/feature extraction
• Reduce size of classical data and optimize

input features for specific tasks (PCA, Auto-
Encoders.. ) 

• Pre-trained or co-trained in hybrid setup

Data embedding : compromise between
exponential compression and circuit depth

• Amplitude Encoding (exponential
compression in nqubits)

• Dense Qubit Encoding (one-to-one) 
• Hybrid Angle Encoding (bx2m values in bxm

qubits)

Dimensionality reduction and data embedding
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Belis, Vasilis, et al. "Higgs analysis 
with quantum classifiers." EPJ 
Web of Conferences. Vol. 251. EDP 
Sciences, 2021.

S.Y. Chang, poster at ”Quantum Tensor 
Network in Machine Learning, NeurIPS 2021 

Effect of different 
encoding in quantum 
CNN 



Model definition

Parametric ansatz
Gradient-free or gradient-based optimization

Data Embedding can be learned
Can design architectures to leverage data 
symmetries1

Variational algorithms

Kernel methods
Feature maps as quantum kernels
Use classical kernel-based training
• Convex losses, global minimum
• Compute pair-wise distances in Ndata

Identify classes of kernels that relate to specific
data structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum 
kernels for data with group structure." arXiv
preprint arXiv:2105.03406 (2021).

1 Bogatskiy, Alexander, et al. "Lorentz group 
equivariant neural network for particle 
physics." International Conference on Machine 
Learning. PMLR, 2020.

Image credit SwissQuantumHub



Important to characterize the behaviour of different
architectures, similarity and links among them and with the 
data. 
Ex: 

• Data Re-Uploading circuits: alternating data encoding and 
variational layers. 

• Represented as explicit linear models (variational) in larger 
feature space

à can be reformulated as implicit models (kernel)
• Representer theorem: implicit models achieve better 

accuracy
• Explicit models exhibit better generalization performance

Equivalent interpretations  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL



Defining quantum Advantage 
for QML

Different possible definitions
Runtime speedup 
Sample complexity
Representational power

A quantum algorithm that cannot be efficiently simulated classically
• No established recipe for classical data
• Need to use the whole exponential advantage in Hilbert space, but will it converge ? 

(Algorithm expressivity vs convergence and generalization) 
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Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).
Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Abbas, Amira, et al. "The power of quantum neural 
networks." Nature Computational Science 1.6 (2021): 403-409.



Practical advantage
Practical implementation vs asymptotic complexity

Data embedding
NISQ vs ideal quantum devices
Realistic applications

Performance metrics and fair comparison to classical models

HEP data is classical, but originally produced by quantum processes. It is 
these intrinsically quantum correlations we are trying to identify  

A change of paradigm could reflect in interesting insights
• What are natural building blocks for QML algorithms?
• How can we construct useful bridges between QC and learning theory?
• How can we make quantum software ready for ML applications?
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See M. Grossi summary at the 2022 CERN Openlab Technical Workshop : https://indico.cern.ch/event/1100904/contributions/4775169/

Khachatryan, Vardan, et al. "Measurement of Long-
Range Near-Side Two-Particle Angular Correlations 
in p p Collisions at s= 13 TeV." Physical review 
letters 116.17 (2016): 172302.

Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal 
for quantum machine learning?." arXiv preprint arXiv:2203.01340 (2022).



QML in High Energy Physics
Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, 

Daniel Lidar, and Maria Spiropulu. Quantum adiabatic machine 
learning by zooming into a region of the energy surface.

Physical Review A, 102:062405, 2020. 
DOI:10.1103/PhysRevA.102.062405.

Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, Masahiko Saito, Ryu 
Sawada, and Junichi Tanaka. Event classification with quantum 
machine learning in 20 high-energy physics. Computing and 
Software for Big Science, 5(1), January 2021.
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Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen 
Zhou, Miron Livny, Federico Carminati, Alberto Di Meglio, Andy C Y Li, 

and et al. Application of quantum machine learning using the 
quantum variational classifier method to high energy physics 

analysis at the lhc on ibm quantum computer simulator and 
hardware with 10 qubits. Journal of Physics G: Nuclear and Particle 

Physics, 48(12):125003, Oct 2021

Alessio Gianelle, Patrick Koppenburg, Donatella 
Lucchesi, Davide Nicotra, Eduardo Rodrigues, Lorenzo 
Sestini, Jacco de Vries, and Davide Zuliani. Quantum 
Machine Learning for 𝑏-jet identification. 
arXiv:2202.13943, 2022.

Vishal S Ngairangbam, Michael Spannowsky, and 
Michihisa Takeuchi. Anomaly detection in high-energy 
physics using a quantum autoencoder. arXiv preprint 
arXiv:2112.04958, 2021.

Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao 
Zhang, Haiwang Yu, and Shinjae Yoo. Quantum 
convolutional neural networks for high energy 
physics data analysis. arXiv preprint: 2012.12177, 
2020.
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QML at CERN
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Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural 
networks for particle track reconstruction." Quantum 
Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, 
BQiT 2021, 2022 CERN openlab Tech Workshop

p0=5%

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia 
Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin
Reiter. Higgs analysis with quantum classifiers. EPJ Web of 
Conferences, 251:03070, 2021

Borras, Kerstin, et al. "Impact of quantum noise on the 
training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).

Chang S.Y. et al., Running the Dual-PQC 
GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21

O. Kiss, Quantum Born Machine for 
event generation, ACAT2021

Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance

Bravo-Prieto, Carlos, et al. "Style-based 
quantum generative adversarial networks 
for Monte Carlo events." arXiv preprint 
arXiv:2110.06933 (2021).



Sofia.Vallecorsa@cern.ch

Thanks!

https://quantum.cern/

https://openlab.cern/quantum
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https://quantum.cern/
https://openlab.cern/quantum


Given the size of the Hilbert space a compromise between 
expressivity, convergence and generalization performance is 
needed.
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau
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QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173




