

15 T dipole demonstrator MDPCT1 – development, tests, lessons learned and next steps

Alexander V Zlobin

US Magnet Development Program

TE-MSC seminar, 7 April 2022

Program Goal

Building for Discovery Strategic Plan for U.S. Particle Physics in the Global Context

- In 2015 Fermilab in response to recommendations of the Particle Physics Project Prioritization Panel (P5) and HEPAP Accelerator R&D subpanel has initiated a program <u>to demonstrate the 15 T field in</u> <u>a Nb₃Sn accelerator dipole</u>
- In 2016, US-DOE Office of High Energy Physics created the national Magnet Development Program (MDP) to integrate accelerator magnet R&D in the U.S. and coordinate it with the international effort

-the project became a key task of the USMDP

 In 2017 this effort received support also by the EuroCirCol program, making it a truly international endeavor.

ENERGY Office of Science

Program background

- By 2015 Nb₃Sn accelerator magnet technology has made significant progress
 - o LBNL: highest field B_{max} = 13.8 T @4.5K
 - LARP: 11-12 T large-aperture quadrupoles with ~15-20% margin
 - FNAL-CERN: 60-mm aperture 11 T MBH dipole demonstrator for the LHC
- Future needs
 - FCC: affordable for mass production 16 T dipole
- Open questions
 - long training, conductor degradation, cost

MSD seminar, 11/10/2015

Coil design studies and selection

V. Kashikhin

Parameter	Cable 1	Cable 2
Number of strands	28	40
Mid-thickness, mm	1.870	1.319
Width, mm	15.10	15.10
Keystone angle, degree	0.805	0.805

MJ/m

U.S. DEPARTMENT OF
Office of
Science

Mechanical structure studies and selection

Section 4

MBHDP

ENERGY Office of Science

I. Novitski

Mechanical structure selection:

- Design 1: SS C-clamps and 20-mm thick SS skin
- Design 2: Al I-clamps and 12-mm thick SS skin
- Design 3: 50-mm thick Al shell

4/17/2018

U.S. MAGNET DEVELOPMENT PROGRAM

15 T Dipole Demonstrator (MDPCT1) design

Optimized coil geometry:

- 60-mm aperture
- Min conductor volume
- 4-layer graded shell-type coil

32

Cable:

- L1-L2: 28 strands, 1 mm RRP150/169
- L3-L4: 40 strands, 0.7 mm RRP108/127
- 0.025 x 11 mm² stainless steel core

Innovative mechanical structure:

- Vertically split iron yoke
- Aluminum I-clamps
- 12.5-mm thick stainless-steel skin
- Cold mass OD=612mm
- Axial coil support with 50-mm thick end plates

U.S. MAGNET DEVELOPMENT PROGRAM **2D** and **3D** magnetic analysis V. Kashikhin Coil end design 50% filling 100% filling factor 100% SSL 87% SSL factor Cylindrical cut-out 50 Peak field is in the straight Vector Fields section 10 1.03 Normal relative sextupole, b_3 (10⁻⁴) •Coil end were optimized to take into 0 1.02 account structural and magnetic 1.01 -10 considerations 1.00 •Without the iron cutout, $\mathsf{B}_{\mathsf{peak}}$ in the coil 0.99 -20 Bpeak/Bpeak(0) end is 2% higher than in the straight 0.98 -30 0.97 section 0.96 Iron saturation •Removing ~45 mm of the iron yoke -40 0.95 Persistent currents around coil ends reduces end B_{peak} to the -Non-linear ellects 0.94 - IR=125mm -50 level of the straight section B_{peak} IR=140m 0.93 0 2 4 6 8 10 12 14 16 50 100 150 200 250 300 350 Bore field (T) Z (mm)

4/17/2018

7

Cable and strand R&D

- Outer-layer cable was developed and used in 11 T Dipole
- Inner-layer cable was developed for HFDA dipole:
 - Effect of cable PF on I_c degradation and RRR
 - Final cable cross-section parameters have been selected
 – PF~87%, Ic degradation <5%, RRR>100
- HT optimization to achieve optimal J_c and RRR
- Magnet conductor:
 - B_{ap}=15.3T @4.5K
 - B_{ap}=16.7T @1.9K

U.S. DEPARTMENT OF ENERGY Office of Science

4/17/2018

Mechanical limit and target pre-load for the 1st test

ENERGY Office of Science

U.S. MAGNET DEVELOPMENT PROGRAM

15 T dipole components

Witness sample data and magnet SSL

- Witness sample data are close to the target I_c
- Good reproducibility of witness sample data for IL and OL coils

Magnet short sample limit: 15.2 T at 4.5 K and 16.8 T at 1.9 K

Short and full-scale Mechanical Models

- Test yoke and clamp
- Validate the mechanical analysis
- Develop the coil prestress targets

500

Magnet assembly

U.S. MAGNET DEVELOPMENT PROGRAM

Magnet instrumentation and 1st test (June 2019)

Instrumentation:

- Voltage taps
- Strain gauges
 - \circ skin
 - \circ clamps
 - o bullets
 - o poles
 - \circ coils
- Quench antennas
- Acoustic sensors
- Thermometers

Significant part of instrumentation has been lost.

U.S. DEPARTMENT OF Office of Science

CONTRACTMENT OF OF Science

15

Magnet disassembly and inspection

Magnet disassembly

Aluminum clamp test with die penetration technique

Iron lamination test with

Coil inspection L1/L2:

 no coil/pole separation in straight section and ends

L3/L4:

- no coil/pole separation in straight sections
- coil/pole separation in coil ends
- lost SG and VTs

MDPCT1 repair and reassembly

U.S. DEPARTMENT OF

Office of Science

MDPCT1 training summary in TC2 and TC3

TC2: May-July 2020

- long training
- erratic behavior at plateau
- small detraining
- all quenches in pole turns of L3, ~78% in coil 5, area A1 and A3

TC3: August 2020

- no training
- large performance degradation
- all quenches in pole turns of L3 in coil 5, area A1

MDPCT1 quench performance summary

B_{max}=14.60 T B_{av}=14.53 T B_{center}=14.50 T -0.3 0 0.1 -0.2 -0.1 0.2 0.3

TC1:

- Test target field 14 T
- B_{max} =14.1T @4.5K, 93% of SSL <u>record field</u> **TC2**:
- Test target field 15 T
- B_{max}=14.5-14.6 T @1.9K <u>record field</u> TC3:
- Test target field 14.5 T
- B_{max}=11.7 T @1.9K *large degradation*
- $I_{\alpha}(T)$ data show that the magnet has been • trained in TC2 and TC3 to its conductor limit.
- Large I_{α} degradation in TC2 and TC3.

Office of

COUNTRY LESS DEPARTMENT OF OF

Post testing disassembly and coil inspection

- Magnet disassembly
- **Inspection of mechanical structure**
 - no visible defects were found
- **Inspection of inner and outer coils**
 - focus on coils 4 and 5 surface in areas A1 (RE), A2 (body) and A3 (LE)

Epoxy cracking and pole turn separation in LE and RE of both coils

Return End

Degradation of coil 4 (smaller than coil 5) is not excluded.

Inner layer RE view of coil 5 at different stages

Inner layer was wound/cured/rewound

No clear evidence why coil 5 limits magnet performance.

U.S. MAGNET DEVELOPMENT PROGRAM

Coil 5 CT scan

300 kV CT scan at AlloyWeld Inspection (Illinois)

LONGITUDINAL SCAN

- It was used at ITER for nondestructive inspection of He inlet welds and of epoxy from vacuum pressure impregnation
- It is used at CERN as an aid to postmortem inspection of R&D magnets
- A service requisition is being written with Diondo (Germany) for 6 MeV CT scans measurements of coil 5, with crack

resolution > 0.4 mm.

U.S. MAGNET DEVELOPMENT PROGRAM

Lessons learned and design modifications

- Stress management (SM) structure to be used in outer layers L3-L4 to improves turn azimuthal and axial support and transfer radial forces
- Since MDPCT structure will be used to test 4-layer magnets with SMCT coils to achieve the fields up to 17 T, skin thickness and axial support system will be reinforced

- 4 new rods for inner coils and 6 old rods for outer SMCT coils
- SMCT coil rod anchoring

DEPARTMENT OF

(Ø) ENERGY

Office of

Science

MDPCT program summary

- The goals of the MDPCT1 program have been achieved
 - graded 4-layer coil, innovative support structure, magnet technologies have been developed
 - \circ magnet performance parameters were tested
 - maximum bore field of 14.5 T @1.9 K is 97% of the program goal
 - the field levels achieved in MDPCT1 @4.5/1.9 K (with FRESCA2 result at 1.9 K) set <u>new world</u> <u>records for Nb₃Sn accelerator magnets</u>
- The lessons learned from the MDPCT1 program are being implemented in SMCT coils

Publications

- 1. A.V. Zlobin et al., "Design concept and parameters of a 15 T Nb₃Sn dipole demonstrator for a 100 TeV hadron collider", IPAC2015, Richmond, VA, USA, p.3365.
- 2. V.V. Kashikhin et al., "Magnetic and structural design of a 15 T Nb₃Sn accelerator dipole model", CEC/ICMC2015, IOP Conference Series: Materials Science and Engineering, v.101, issue 1, p.012055, 2015
- 3. I. Novitski et al., "Development of a 15 T Nb₃Sn Accelerator Dipole Demonstrator at Fermilab", IEEE TAS, Vol. 26, Issue 3, June 2016, 4001007.
- 4. E. Barzi et al., "Nb₃Sn RRP® Strand and Rutherford Cable Development for a 15 T Dipole Demonstrator," IEEE TAS, Vol. 26, Issue 3, June 2016, 4001007.
- 5. I. Novitski, A.V. Zlobin, "Development and Comparison of Mechanical Structures for FNAL 15 T Nb₃Sn Dipole Demonstrator", NAPAC2016, Chicago, IL, USA, p.137
- 6. E. Barzi et al., "Heat Treatment Optimization of Rutherford Cables for a 15 T Nb₃Sn Dipole Demonstrator", IEEE TAS, Vol. 27, Issue 4, 2017, 4802905
- 7. C. Kokkinos et al., "FEA Model and Mechanical Analysis of the Nb₃Sn 15 T Dipole Demonstrator," IEEE TAS, Vol. 28, Issue 3, April 2018, 4007406
- 8. C. Orozco et al., "Assembly and Tests of Mechanical Models of the 15 T Nb₃Sn Dipole Demonstrator," IEEE TAS, Vol. 29, Issue 5, August 2019, 4003404
- 9. A.V. Zlobin et al., "Quench performance and field quality of the 15 T Nb₃Sn dipole demonstrator MDPCT1 in the first test run", NAPAC2019, September 2019.
- 10.A.V. Zlobin et al., "Development and First Test of the 15 T Nb₃Sn Dipole Demonstrator MDPCT1", IEEE TAS, Volume 30, Issue 4, 2020
- **11.T.** Strauss et al., "First field measurements of the **15** T Nb₃Sn Dipole Demonstrator MDPCT1", IEEE TAS, Volume 30, Issue 4, 2020,
- 12.A.V. Zlobin et al., "Reassembly and Test of High-Field Nb3Sn Dipole Demonstrator MDPCT1", IEEE TAS, Vol. 31, Issue 5, 2021.
- 13.J. DiMarco et al., "Field Measurement Results of the 15 T Nb3Sn Dipole Demonstrator MDPCT1b," IEEE TAS, Vol. 31, Issue 5, 2021.

Acknowledgment

 FNAL: I. Novitski, E. Barzi, J. Carmichael, G. Chlachidze, J. DiMarco, V.V. Kashikhin, S. Krave, C. Orozco, S. Stoynev, T. Strauss, M. Tartaglia, D. Turrioni, A. Rusy, S. Jonhson, J. Karambis, J. McQueary, L. Ruiz, E. Garcia
LBNL: S. Caspi, M. Juchno, M. Martchevskii
CERN: D. Schoerling, D. Tommasini

FEAC/UPATRAS: C. Kokkinos

US-MDP: G7 and TAC

This work was supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and the US-MDP.