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Discovery and Instrumentation
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Jean-Leon Huens, National Geographic

In 1610 

Galileo Galilei 

discovered four 

Jupiter moons

In 1608 

Hans Lippershey

filed a patent for 

a telescope

 what was more important? →



Recent discoveries
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Higgs Boson

LHC Detector

Gravitational 
Wave

Ligo Detector

Black Hole

Event Horizon 
Detector Network

2013 2017



From Detectors to Data
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Detector Amplifier Digitization Computer Data

This Talk



Data acquisition (DAQ) in the context of an experiment?
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Design            Prototyping                 Construction                   Data Acquisition                       Publication

Simulation            Testing                   Implementation                               Analysis

• DAQ links the hardware and the data analysis

• DAQ needs consideration in the design of the experiment

• DAQ provides tools for the validation of the experiment

• Analysis requires detailed knowledge of DAQ



Measured quantities in Particle Physics

▸ Position→ position sensitive detectors

▸ Time→ resolutions down to ps

▸ Energy→ calorimeter

▸ Momentum, Charge→ curvature in B-field

7

Tigress
TRIUMF

CMS
CERN

MEG
PSI



Particle Detection

▸Old days: Looking by eye 
at scintillators

▸Today: Converting 
detector signal into 
electronic signals
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Digitization Computer



2 Principles of Detection of Ionizing Radiation

1. Detectors convert property to be measured directly into electrical signal   → position, time

2. Indirect via light generation in scintillator → energy, time

9Silicon detector Wire chamber Photomultiplier

→ See other Lectures



Signals and Electronics
How we process the information from detectors
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Signals are fast!

▸ Cosmic Muon with 90% speed of light hits two detectors 10 cm apart

▸ What is the time difference between the two signals?
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d
 =
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t = d / v = 0.1 m / (0.9 * 3*108 m/s) = 

0.0000000004 s = 0.4 ns

t = ?

You need a fast clock!



Principle of an oscilloscope
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time

amplitude

Fast sawtooth signal

generator

Detector signal 

(usually negative)



Oscilloscope

Modern Digital Oscilloscopes
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Detector Amplifier Digitization Computer
Display

time

01101



Electronic Signals

▸ Electrical signals are well suited 
for transport, manipulation, 
digitization and storage

▸ Signals can be easily amplified 
(typically 106 -1010)

Qe-=1.6 x 10-19 C
100 mV x 10 ns = 10-9 C

▸ Electrical signals let you 
discriminate between signal and 
noise

▸Coincidence between detectors 
can be made with AND gates
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Signal Discrimination

▸Convert analog detector signal to digital signal
- Digital signal can be processed in logic and computers (”0”/”1”)

- Good for detection and timing

- Problem: “Time-walk” effect
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Leading Edge
Comparator

AND gate

…

Time Walk



Signal Discrimination

▸ Constant Fraction Discriminator (CFD) triggers independent of signal amplitude

▸ Trick: do not trigger at constant threshold, but at constant fraction of signal amplitude
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70% of red signal

70% of green signal



Implementation of a CFD
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Inverter & Attenuator

S

Delay

Adder
0

https://doi.org/10.1016/j.nima.2012.04.088

Attenuate



Digital Signal Levels

▸Different signal levels standards evolved over time driven by
- Available transistor technology

- Speed of signals

- Noise immunity

- Power consumption

18Voltage Levels Differential Signaling Termination
https://doi.org/10.1088/1742-6596/278/1/012039

hf-praxis 6/2014



Analog-to-Digital Conversion
→ Shifted to Nov. 25th lecture
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File Programmable Gate Arrays
How to process digital data
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Field Programmable Gate Array (FPGA)

21Wire-wrap technique 1960- (Apollo 11)
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FPGA interconnects
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Wire connections:
Fuse: Programmable Logic Device (PLD)
Switch+1-bit memory: Field Programmable Gate Array (FPGA)



Modern FPGA
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Xilinx Spartan 6 Configurable Logic Block

IOB

Input-Output Block

CLB

Configurable Logic Block

PSM

Programmable Switch Matrix



FPGA features

▸ Today almost all logic is done with FPGAs in particle physics

- Programming via Hardware Definition Languages (VHDL, Verilog)

- Re-programmable even after installation

- High cost of FPAG ($10-$1000) not so important

▸ Modern FPGA (Xilinx, Altera, Lattice, …) 
have many features:

- Digital Signal Processing Blocks (DSP)

- Block RAM

- Gigabit serial links

- Connectivity (USB, Ethernet, …)

- Soft/Hard-core CPUs

▸ Particle physics:

- Read ADC/TDC

- Pre-process data

- Send data via high speed serial links
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Xilinx Zync Ultrascale+
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Time-To-Digital Conversion
TDCs
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TDCs

▸Often it is enough to know time of event

▸Time-to-digital converter to measure relative time
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Detector Amplifier Discriminator TDC

A=0100100

Detector Amplifier Discriminator TDC

CPU

B=0100011

A=B ?Clock



Digitization: Time-to-digital Converter
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Examples of TDCs

HPTDC (CERN)
32 channels, 17 ps resolution
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FPGA TDC

Jinyuan Wu (Fermilab): 32 channels, 10 ps resolution

Sven Engström (Linköping Univ.): 1.8 ps resolution



Triggering
How to reduce your data to be recorded
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Triggering

▸ Detectors produce continuous electrical signal

▸ You might only be interested in “events”

▸ Trigger your readout electronic only if something “happens”

▸ Can reduce your data rate enormously

30

Detector Amplifier Discriminator TDC
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Trigger of MEG Experiment

▸ Event size: 3 MB

▸ Muon stop rate: 108 Hz

▸ LXe rate: 105 Hz

→ 300 GB/s

▸ Energy sum trigger → 103 Hz

▸ Time trigger → 102 Hz

▸ Direction match → 10 Hz

→ Data rate 30 MB/s

31

Energy cutTime cut

DSP Block in FPGA

to add weighted sum



Trigger-less DAQ

▸ Mu3e experiment at PSI 
searches for decay m→ e+e-e+

▸ 200 M pixels are very hard to 
trigger on

▸ Trigger-less DAQ:
- each particle hit is sent out

- ~100 GB/s 
→ 100’s of high speed optical links

- Switching boards for 
”event building”

- Send full events in 50 ns “frames” 
to 12 GPUs

- GPUs do full event reconstructing 
and can reject 99.9% of 
background

→ 100 MB/s data rate
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Bus Standards
… used in particle physics over the years
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Bus standards

▸ NIM (1968): Nuclear Instrument Module 
- Still in use for standard logic for workbench tests

▸ CAMAC (1972): Computer Automated Measurement and Control, use TTL parallel bus
- Still in use in older system (Triumf/PSI Cyclotron Control)

▸ VME (1981): Vesa Module Europcard
- Very much in use, as VME modules are still commercially available (parallel backplane bus).

▸ FastBus (1984): To replace CAMAC with ECL parallel bus
- Dead 

▸ VXI (2004): VME eXtensions for Instrumentation
- Was an extension to fit a transition…

▸ VXS (2006): VMEBus Switched Serial
- In use due to its serial bus backplane and slot configuration (Full mesh, Dual star). Redundant system 

(five-9 / max down time of 5.26 minutes per year.)

▸ ATCA (uTCA) (2003): Advanced Telecommunications Computing Architecture
- PCI Industrial Computer Manufacturers Group (PICMG)

- New trend for Physics applications, combines VXS, self-managed crate, Single -48V, fully differential 
connections. 
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Nuclear Instrument Module (NIM) 1968

▸Basic Analog Elements
- Delay

- Splitter

- Discriminator

- Attenuator

- Amplifier/Shaper

▸Basic Logic Elements
- AND/OR

- Latch

- Timer

- Scaler

35

Power:
+/- 6V
+/- 12V
+/- 24V



Computer Automated Measurement and Control (CAMAC) 1972

▸ADC

▸TDC

▸Scaler

▸Programmable…
- Delays

- Discriminators

- Attenuators

- I/Os
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Power:
+/- 6V
+/- 12V
+/- 24V

Communication:
N Slot address (5 bit)
A Module address (4 bit)
F Function (5 bit)
Data bus (24 bit)



Vesa Module Eurocard (VME) 1981
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▸ADC

▸TDC

▸Scaler

▸CPUs

▸Programmable…
- Delays

- Discriminators

- Attenuators

- I/Os
Power:
+/- 5V
+/- 12V
+/- 3.3V

Communication:
Address bus (32 bit)
Data bus (32 bit)
Control bus (IRQ, AM, …)

VMEIO - 2009                CAEN V1720 8ch, 12bits@250Msps



Advanced Telecommunication Computing Architecture (ATCA, uTCA)

▸Defined by PICMG.org

▸High redundancy 
(99.999% availability) for 
telecommunication

▸Redundant -48V Power

▸Dual star serial links with 
100 Gb Ethernet over 
backplane

▸Read Transition Modules

▸ Shelf manager
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WaveDAQ

▸ Developed at PSI

▸ 3HE full custom backplane with 
dual star GBit links

▸ Intelligent power supply with shelf 
management

▸ Used in MEG experiment with 
9000+ channels 5 GSPS/12bit
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Data Acquisition Systems
Software Part between Digitizers and Storage
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Data Acquisition (DAQ)

▸We have
- Detectors producing electrical signal

- Analog electronics to condition/shape the signal

- Digitizers for amplitude, charge, time

▸We want
- Define an “event” as a collection of data belonging 

to one physics process (e.g. particle decay)

- Read digitized data from hardware

- Combine data from several detectors

- Store data on permanent medium (disk, tape)

41

Det

Ampl.
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TDC



Requirements for a DAQ system

▸ Experiment independent, read all types of hardware

▸ Typically 10-10,000 channels (will not cover LHC)

▸ Highly configurable

▸ ”Run concept”: Data collected during defined experiment conditions

▸ Robust

▸ Should not rely on “trendy” hard- and software 
(will it run in 10 years?)

▸ Efficient and performant, typically 100-1000 MB/s

▸ Include “slow control” (temperatures, pressures, …) with plots over time (“History”)

▸ Good features: Central configuration, Alarms, Data monitoring, 
Single Event Display, Communication between shifters

▸ Remote (web) controllable
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Writing DAQ software is orders of magnitude more complicated than writing simulation or analysis code

DAQ programming is the “master discipline” of coding



Overview of DAQ systems

▸ Most physics lab have their own DAQ system and experts

▸ Labview

- Commercial system from National Instruments Corp.

- Works well for small setups

- Drivers for many devices, NI hardware

- Writing own drivers can be tricky

▸ ORCA
- Developed at Univ. North Carolina

- Runs only on MacOS

- Experiments: KATRIN, MAJORANA, SNO+

▸ Artdaq
- Developed by Fermilab

- Based on art offline framework (originally form CMS)

- Experiments: LARiAT, Darkside-50, Mu2e

▸ Midas-UK: Multi Instance Data Acquisition System (Rutherford – STFC)

▸ CODA
- Developed at Jefferson Lab and used for experiments there

- Relies on special readout controller

▸ And many more…
43

CODA

ORCA

Labview



MIDAS system

▸ Development started in 1993 at PSI, Switzerland 
joined by TRIUMF, CA in 1996

▸ Today used at PSI and TRIUMF as the standard 
system, plus CERN (Alpha-g), KEK (T2K), Fermilab
(g-2), …

▸ Maximum Integrated Data Acquisition System

- Written in C++, JavaScript

- Integrated Slow Control

- Operating system / hardware 
independent

- Quick installation

- Easy customization

- Free (GPL)

- Good for 1-50 DAQ computers and 
~1 GB/s data rate

▸ https://midas.triumf.ca
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DAQ and Monitoring
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MIDAS in a nutshell
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Status Page

Database Editor

Alarm Page
History Display

Histogram Data

Custom Page



p-scat Experiment, TRIUMF

▸ Period: < 1985
▸ Channel Count: <100
▸ DAQ Hardware: NIM, CAMAC

[ADCs, TDCs, Scalers]
▸ Computer: Digital PDP 11/34
▸ Rates: 100 events/s
▸ Programming Language: FORTRAN
▸ Storage: Memorex MRX-V ½”x 10-¾”
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CHAOS Experiment, TRIUMF

▸ Period: 1990 - 2000
▸ Channel Count: ~2500
▸ DAQ Hardware: NIM, CAMAC, VME, FastBus
▸ Trigger FPGA Precursor in CAMAC 

(Added, Multiplier, Stack)
▸ Computer: Digital µVax-3400
▸ Rates: ~100 events/s
▸ Programming Language: FORTRAN
▸ Storage: DLTape IV 80GB (compressed)
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MEG II Experiment, PSI
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▸ Period: 2008 -
▸ Channel Count: ~9000
▸ DAQ Hardware: Custom WaveDAQ crate with 

DRS4 chip (5 GS/s, 12 bit)
▸ Sophisticated FPGA trigger
▸ Computer: FPGA Frontend (Xilinx Zynq), 

40-core backend PC
▸ Rates: 30 events/s, 3 MB events, ~100 MB/s
▸ Software: MIDAS, ROOT
▸ Storage: Local SDD (4TB), PSI cluster (1.5 PB)



Alpha-g Experiment, CERN
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▸ Period: 2016 -
▸ Channel Count: ~19’000! 
▸ DAQ Hardware: VME (for power only)

Frontend Electronics on detector with Ethernet Optical Links
▸ Custom Build Hardware with FPGAs : WFDs, TDCs, Logic
▸ Computer: PCs
▸ Rates: ~1000 events/s,  ~200 MB/s
▸ Software: MIDAS, C, C++, Web tools
▸ Storage: Local HDD, Cloud



• Electronics and DAQ are essential

to make new discoveries

• To work on DAQ, a broad set of 

evolving skills is necessary

- Detector Technology

- Analog and Digital Electronics

- FPGA programming

- Serial Links, Networking

- Multi-thread programming

- Cluster computing

- User Interfaces

- …

• Skills can only be obtained in 

hands-on environments

• Many thanks to 

- Pierre-André Amaudruz for some slides

- IEEE Nuclear and Plasma Sciences 

Society for sponsoring this lecture


