

Electronics and DAQ

Stefan Ritt, Paul Scherrer Institute, Switzerland IEEE NPSS Workshop on Applicatioins of Radiation Instrumentation Nov. 14th, 2022, Dakar, Senegal

Stefan Ritt

- Studied in Karlsruhe, Germany
- Postdoc Univ. of Virginia, USA
- Head of muon physics group at PSI, Switzerland
 - Developer of MIDAS DAQ system https://midas.triumf.ca
 - Developer of DRS4 chip https://www.psi.ch/drs
 - Developer of ELOG electronic logbook <u>https://elog.psi.ch/elog/</u>
 - Co-spokesperson of Mu3e Experiment https://www.psi.ch/mu3e
 - Fellow of IEEE NPSS society https://ieee-npss.org
- Hobbies: Biking, Scuba diving, Drone flying, 3D printing

Discovery and Instrumentation

In 1610 Galileo Galilei discovered four Jupiter moons

Jean-Leon Huens, National Geographic

 \leftarrow what was more important? \rightarrow

In 1608 Hans Lippershey filed a patent for a telescope

2 Coleter 1600 Fined Lipportes

Recent discoveries

From Detectors to Data

This Talk

Data acquisition (DAQ) in the context of an experiment?

- DAQ links the hardware and the data analysis
- DAQ needs consideration in the design of the experiment
- DAQ provides tools for the validation of the experiment
- Analysis requires detailed knowledge of DAQ

Measured quantities in Particle Physics

- Position → position sensitive detectors
- Time \rightarrow resolutions down to ps
- **Energy** \rightarrow calorimeter
- Momentum, Charge → curvature in B-field

Particle Detection

 Old days: Looking by eye at scintillators

 Today: Converting detector signal into electronic signals

2 Principles of Detection of Ionizing Radiation

- 1. Detectors convert property to be measured directly into electrical signal \rightarrow position, time
- 2. Indirect via light generation in scintillator
- \rightarrow energy, time

\rightarrow See other Lectures

Signals and Electronics

How we process the information from detectors

Signals are fast!

- Cosmic Muon with 90% speed of light hits two detectors 10 cm apart
- What is the time difference between the two signals?

$$t = d / v = 0.1 m / (0.9 * 3*10^8 m/s) = 0.0000000004 s = 0.4 ns$$

Principle of an oscilloscope

Modern Digital Oscilloscopes

Electronic Signals

- Electrical signals are well suited for transport, manipulation, digitization and storage
- Signals can be easily amplified (typically 10⁶ -10¹⁰) Q_e=1.6 x 10⁻¹⁹ C 100 mV x 10 ns = 10⁻⁹ C
- Electrical signals let you discriminate between signal and noise
- Coincidence between detectors can be made with AND gates

Signal Discrimination

- Convert analog detector signal to digital signal
 - Digital signal can be processed in logic and computers ("0"/"1")
 - Good for detection and timing
 - Problem: "Time-walk" effect

Signal Discrimination

- Constant Fraction Discriminator (CFD) triggers independent of signal amplitude
- Trick: do not trigger at constant threshold, but at constant fraction of signal amplitude

Digital Signal Levels

Different signal levels standards evolved over time driven by

- Available transistor technology
- Speed of signals
- Noise immunity
- Power consumption

Termination 18

Analog-to-Digital Conversion

→ Shifted to Nov. 25th lecture

File Programmable Gate Arrays

How to process digital data

Field Programmable Gate Array (FPGA)

Basic Logic Block

Programmable Logic Block with LUT

O = A and B and C

O = (A or B) and C

1 1

1

Wire-wrap technique 1960- (Apollo 11)

FPGA interconnects

Wire connections: Fuse: Programmable Logic Device (PLD) Switch+1-bit memory: Field Programmable Gate Array (FPGA)

Modern FPGA

Input-Output Block

IOB

Configurable Logic Block

PSM Programmable Switch Matrix

E XILINX.

Spartan-6 Family Overview

Spartan-6 FPGA Feature Summary

Table 1: Spartan-6 FPGA Feature Summary by Device

Device	Logic Cells ⁽¹⁾	Configurable Logic Blocks (CLBs)				Block RAM Blocks				Francisco		Total	
		Slices ⁽²⁾	Flip-Flops	Max Distributed RAM (Kb)	DSP48A1 Silices ⁽³⁾	18 Kb ⁽⁴⁾	Max (Kb)	CMTs ⁽⁵⁾	Controller Blocks	Blocks for PCI Express	GTP Transceivers	VO Banks	User
XC6SLX4	3,840	600	4,800	75	8	12	216	2	0	0	0	4	120
XC6SLX9	9,152	1,430	11,440	90	16	32	576	2	2	0	0	4	200
XC6SLX16	14,579	2,278	18,224	136	32	32	576	2	2	0	0	4	232
XC6SLX25	24,051	3,750	30,064	229	38	52	936	2	2	0	0	4	266
XC6SLX45	43,661	6,822	54,576	401	58	116	2,088	4	2	0	0	4	358
XC6SLX75	74,637	11,662	93,296	692	132	172	3,096	6	4	0	0	6	400
XC6SLX100	101,261	15,822	126,576	976	180	268	4,824	6	4	0	0	6	480
XC6SLX150	147,443	23,038	184,304	1,355	180	268	4,824	6	4	0	0	6	570
XC6SLX25T	24,051	3,750	30,064	229	38	52	936	2	2	1	2	4	250
XC6SLX45T	43,661	6,822	54,576	401	58	116	2,088	4	2	1	4	4	296
XC6SLX75T	74,637	11,662	93,296	692	132	172	3,096	6	4	1	8	6	320
XC6SLX100T	101,261	15,822	126,576	976	180	268	4,824	6	4	1	8	6	490
XC6SLX150T	147 443	23.038	184 304	1.355	180	268	4 8 2 4	6	4	1	8	6	530

Notes:

1. Spartan-6 FPGA logic cell ratings reflect the increased logic cell capability offered by the new 6-input LUT architecture.

- 2. Each Spartan-6 FPGA slice contains four LUTs and eight flip-flops.
- 3. Each DSP48A1 slice contains an 18 x 18 multiplier, an adder, and an accumulator.
- 4. Block RAMs are fundamentally 18 Kb in size. Each block can also be used as two independent 9 Kb blocks.

5. Each CMT contains two DCMs and one PLL.

23

FPGA features

- Today almost all logic is done with FPGAs in particle physics
 - Programming via Hardware Definition Languages (VHDL, Verilog)
 - Re-programmable even after installation
 - High cost of FPAG (\$10-\$1000) not so important
- Modern FPGA (Xilinx, Altera, Lattice, ...) have many features:
 - Digital Signal Processing Blocks (DSP)
 - Block RAM
 - Gigabit serial links
 - Connectivity (USB, Ethernet, ...)
 - Soft/Hard-core CPUs
- Particle physics:
 - Read ADC/TDC
 - Pre-process data
 - Send data via high speed serial links

if rising_edge(clk) then
 O <= A & B & C;
end if</pre>

Time-To-Digital Conversion

TDCs

TDCs

- Often it is enough to know time of event
- Time-to-digital converter to measure relative time

Digitization: Time-to-digital Converter

Examples of TDCs

HPTDC (CERN)

32 channels, 17 ps resolution

FPGA TDC

Jinyuan Wu (Fermilab): 32 channels, 10 ps resolution Sven Engström (Linköping Univ.): 1.8 ps resolution

Triggering

How to reduce your data to be recorded

Triggering

- > Detectors produce **continuous** electrical signal
- You might only be interested in "events"
- Trigger your readout electronic only if something "happens"
- Can reduce your data rate enormously

PET image of human brain

Trigger of MEG Experiment

pedesta

of i+1

DSP Block in FPGA to add weighted sum

- Event size: 3 MB
- Muon stop rate: 10⁸ Hz
- LXe rate: 10⁵ Hz
 → 300 GB/s
- Energy sum trigger $\rightarrow 10^3$ Hz

Tey (sec)

- Time trigger $\rightarrow 10^2$ Hz
- Direction match \rightarrow 10 Hz \rightarrow Data rate 30 MB/s

0.051 0.052 0.053

Trigger-less DAQ

- Mu3e experiment at PSI searches for decay μ → e⁺e⁻e⁺
- 200 M pixels are very hard to trigger on
- Trigger-less DAQ:

-

- each particle hit is sent out
- ~100 GB/s \rightarrow 100's of high speed optical links
- Switching boards for "event building"
- Send full events in 50 ns "**frames**" to 12 GPUs
- GPUs do full event reconstructing and can reject 99.9% of background
 - → 100 MB/s data rate

Bus Standards

... used in particle physics over the years

Bus standards

- NIM (1968): Nuclear Instrument Module
 - Still in use for standard logic for workbench tests
- CAMAC (1972): Computer Automated Measurement and Control, use TTL parallel bus
 - Still in use in older system (Triumf/PSI Cyclotron Control)
- VME (1981): Vesa Module Europcard
 - Very much in use, as VME modules are still commercially available (parallel backplane bus).
- FastBus (1984): To replace CAMAC with ECL parallel bus
 - Dead
- VXI (2004): VME eXtensions for Instrumentation
 - Was an extension to fit a transition...
- VXS (2006): VMEBus Switched Serial
 - In use due to its serial bus backplane and slot configuration (Full mesh, Dual star). Redundant system (five-9 / max down time of 5.26 minutes per year.)
- ATCA (uTCA) (2003): Advanced Telecommunications Computing Architecture
 - PCI Industrial Computer Manufacturers Group (PICMG)
 - New trend for Physics applications, combines VXS, self-managed crate, Single -48V, fully differential connections.

Nuclear Instrument Module (NIM) 1968

- Basic Analog Elements
 - Delay
 - Splitter
 - Discriminator
 - Attenuator
 - Amplifier/Shaper
- Basic Logic Elements
 - AND/OR
 - Latch
 - Timer
 - Scaler

Power: +/- 6V +/- 12V +/- 24V

Computer Automated Measurement and Control (CAMAC) 1972

- ► ADC
- ► TDC
- Scaler
- Programmable...
 - Delays
 - Discriminators
 - Attenuators
 - I/Os

Communication: N Slot address (5 bit) A Module address (4 bit) F Function (5 bit) Data bus (24 bit)

Vesa Module Eurocard (VME) 1981

- ► ADC
- ► TDC
- ► Scaler
- ► CPUs
- Programmable...
 - Delays
 - Discriminators
 - Attenuators
 - I/Os

VMEIO - 2009

CAEN V1720 8ch, 12bits@250Msps

Power:
+/- 5V
+/- 12V
+/- 3.3V

Communication: Address bus (32 bit) Data bus (32 bit) Control bus (IRQ, AM, ...)

Advanced Telecommunication Computing Architecture (ATCA, uTCA)

- Defined by PICMG.org
- High redundancy (99.999% availability) for telecommunication
- Redundant -48V Power
- Dual star serial links with 100 Gb Ethernet over backplane
- Read Transition Modules
- Shelf manager

Artisan Technology Group

WaveDAQ

- Developed at PSI
- 3HE full custom backplane with dual star GBit links
- Intelligent power supply with shelf management
- Used in MEG experiment with 9000+ channels 5 GSPS/12bit

Data Acquisition Systems

Software Part between Digitizers and Storage

Data Acquisition (DAQ)

- We have
 - Detectors producing electrical signal
 - Analog electronics to condition/shape the signal
 - Digitizers for amplitude, charge, time
- We want
 - Define an "**event**" as a collection of data belonging to one physics process (e.g. particle decay)
 - Read digitized data from hardware
 - Combine data from several detectors
 - Store data on permanent medium (disk, tape)

Requirements for a DAQ system

- Experiment independent, read all types of hardware
- Typically 10-10,000 channels (will not cover LHC)
- Highly configurable
- "Run concept": Data collected during defined experiment conditions
- Robust
- Should not rely on "trendy" hard- and software (will it run in 10 years?)
- Efficient and performant, typically 100-1000 MB/s
- Include "slow control" (temperatures, pressures, ...) with plots over time ("History")
- Good features: Central configuration, Alarms, Data monitoring, Single Event Display, Communication between shifters
- Remote (web) controllable

Writing DAQ software is orders of magnitude more complicated than writing simulation or analysis code DAQ programming is the "master discipline" of coding

Overview of DAQ systems

- Most physics lab have their own DAQ system and experts
- Labview
 - Commercial system from National Instruments Corp.
 - Works well for small setups
 - Drivers for many devices, NI hardware
 - Writing own drivers can be tricky

ORCA

- Developed at Univ. North Carolina
- Runs only on MacOS
- Experiments: KATRIN, MAJORANA, SNO+
- Artdaq
 - Developed by Fermilab
 - Based on art offline framework (originally form CMS)
 - Experiments: LARiAT, Darkside-50, Mu2e
- Midas-UK: Multi Instance Data Acquisition System (Rutherford STFC)
- CODA
 - Developed at Jefferson Lab and used for experiments there
 - Relies on special readout controller
- And many more...

MIDAS system

- Development started in 1993 at PSI, Switzerland joined by TRIUMF, CA in 1996
- Today used at PSI and TRIUMF as the standard system, plus CERN (Alpha-g), KEK (T2K), Fermilab (g-2), ...
- Maximum Integrated Data Acquisition System
 - Written in C++, JavaScript
 - Integrated Slow Control
 - Operating system / hardware independent
 - Quick installation
 - Easy customization
 - Free (GPL)
 - Good for 1-50 DAQ computers and ~1 GB/s data rate
- https://midas.triumf.ca

		Status Me	ssages ELog Programs	History Sequencer	Chat					
			Stop FEs (Re)Sta	rt FEs						
	Run Log Expert pag	e CurrentDTMTrigger MP	OD_HV VME AARFs N	otifications Plots Si	HUT DOWN HV Start o	or Stop Run Logo				
			Run Statu	ŝ						
		Start: Fri May 10	13:55:21 2019	F	tunning time: 5h49m0)4s				
(Alarms: On	Data dir: /deap/dug1/data/MidasFiles							
	Run H	IV on?:	1							
\prec	25046 R	tun comment:	Physics trigger at 1000ADC in 8 bin, beta prescale factor 100, SQT filtering self-trigger, LAr fill complete Wagar							
	Running	up started but								
	R	tun type:	460							
		ata quality link:	link: Click here to edit DO info for this run							
	14:	26:13 [fenutups02,INFO]	UPS status changed from [O	L LB] to [OL], charge	100%, run time 4.6m	iin				
	<u> </u>		Equipment							
	Equipment +		Status	Evente	Evente[/e]	Data[MB/c				
_	Equipment +	(S)	arted pup	66 359M	3272 8	12 197				
$\left \right\rangle$	DTM		arted run	66 364M	3184 5	0.277				
	EEV/1720MTI00	6	arted pup	10.262M	499.0	6 261				
	FEV1720MTI01	51	arted nun	10.262M	501.5	5.005				
	FEV1720MTI02	5	arted run	10.262M	508.3	4 613				
	FEV1720MTI03		arted pup	10.262M	500.7	5.020				
	FEV1740MT	51	arted run	721095	36.5	0.190				
	FEVETO	51	arted run	2 017M	92.3	0.423				
	FECALIB		arted nut	10.262M	512.9	0.029				
	deanSch	Aca	Aco On: 28/28		0.0	0.000				
	deapmpod		Ok	0	0.0	0.000				
	deancdu		Ok	0	0.0	0.000				
	deapups		Ok	0	0.0	0.000				
	deapwater	H2O Tout C	1 13 3/ 13 2/ 13 0	2085	0.0	0.000				
	NutUps01	Status: 0	100% 4.8min	0	0.0	0.000				
	NutUps02	Status: 0	100% 4 6min	0	0.0	0.000				
	Nutlins03	Status: 0	100% 4 7min	0	0.0	0.000				
	deapyme01		Ok	i o	0.0	0.000				
	deapyme02		Ok	ő	0.0	0.000				
	deanyme03		OK	0	0.0	0.000				
\subseteq	Hydrophone		Ok	3	0.0	0.000				
C	C Longing Channels									
\prec		Channel	Events	MB writte	en Compr.	Disk leve				
	#0: .deap	00025046_0064.mid.gz	66365418	123090.3	79 50.6%	16.5 %				
	Clients									
	mserver [d	eap00]	Logger [deap00]		fedeapvme01 [deap00]					
	fedeapvme02	[deap00]	fedeapvme03 [deap0	0]	deapcdu [deap00]					
	deapups [d	eap00]	fenutups01 [deap00]	fenutups03 [deap00]					
	feWater [de	eap00]	mhttpd [deap00]		DaqMonitor [deap00]					
)	NoNewEvents	[deap00]	RunStoppedTooLong [de	ap00]	MultipleChannelTrips [deap00]					
5	fenutups02 [deap00]	online_ana_webserv [dea	apana]	feHydrophone [deapana]					
	TellieUSB [d	eapana]	deapdisplay [deapcal	ib]	fedeapScb [deap00]					
	fedeapmpod	[deap00]	feDTM [lxdeap01]		feov1720MTI00 [deap01a]					
	feov1720MTI01	[deap02b]	feov1720MTI02 [deap0	03c]	feCALIB [deap05e]					
	feov1720MTI03	[deap04d]	feoV1740MT [deap05	ie]	feVETO [deap05e]					
	febuilder [d	eap001								

DAQ and Monitoring

MIDAS in a nutshell

π -scat Experiment, TRIUMF

- Period: < 1985</p>
- Channel Count: <100</p>
- DAQ Hardware: NIM, CAMAC [ADCs, TDCs, Scalers]
- Computer: Digital PDP 11/34
- Rates: 100 events/s
- Programming Language: FORTRAN
- Storage: Memorex MRX-V ¹/₂"x 10-³/₄"

CHAOS Experiment, TRIUMF

- Period: 1990 2000
- Channel Count: ~2500
- DAQ Hardware: NIM, CAMAC, VME, FastBus
- Trigger FPGA Precursor in CAMAC (Added, Multiplier, Stack)
- Computer: Digital **µVax-3400**
- Rates: ~100 events/s
- Programming Language: FORTRAN
- Storage: DLTape IV 80GB (compressed)

-pcos III	The # A =
CONTRACT CON	mask away unwanted hits
	store hits for sequential Comparison.
	$\alpha = \Theta_{i} - \Theta_{ref.}$
	$S_{1} = \Theta_{2} - \alpha$ $B_{3} = \Theta_{3} - \alpha$
	$ \begin{aligned} \overline{\delta}_2 &= \beta_2 - \Theta_{ref.} \\ \overline{\delta}_3 &= \beta_3 - \Theta_{ref.} \end{aligned} $
the V/2 the	$y_{cs/no}:$ $P = f(\delta_{2}, \delta_{3})$ $polarity = g(S_{2}, \delta_{3})$ $v_{criter} = h(L_{2}, S_{3})$

MEG II Experiment, PSI

- Period: 2008 -
- Channel Count: ~9000
- DAQ Hardware: Custom WaveDAQ crate with DRS4 chip (5 GS/s, 12 bit)
- Sophisticated FPGA trigger
- Computer: FPGA Frontend (Xilinx Zynq),
 40-core backend PC
- Rates: 30 events/s, 3 MB events, ~100 MB/s
- Software: MIDAS, ROOT
- Storage: Local SDD (4TB), PSI cluster (1.5 PB)

Alpha-g Experiment, CERN

- Period: 2016 -
- Channel Count: ~19'000!
- DAQ Hardware: VME (for power only)
 Frontend Electronics on detector with Ethernet Optical Links
- Custom Build Hardware with FPGAs : WFDs, TDCs, Logic
- Computer: PCs
- Rates: ~1000 events/s, ~200 MB/s
- Software: MIDAS, C, C++, Web tools
- Storage: Local HDD, Cloud

- Electronics and DAQ are essential to make new discoveries
- To work on DAQ, a broad set of evolving skills is necessary
 - Detector Technology
 - Analog and Digital Electronics
 - FPGA programming
 - Serial Links, Networking
 - Multi-thread programming
 - Cluster computing
 - User Interfaces
- Skills can only be obtained in hands-on environments
 - Many thanks to
 - Pierre-André Amaudruz for some slides
 - IEEE Nuclear and Plasma Sciences
 - Society for sponsoring this lecture

