
Handling of Petabyte-Scale datasets in
modern Physics Experiments

Martin L. Purschke

1

Brookhaven National Laboratory
Home of the Relativistic Heavy Ion Collide and the future Electron-Ion Collider…

2

RHIC from space

Manhattan

… and of the new sPHENIX experiment – largest US Nuclear Physics experiment under
construction (that’s what I work on)

Long Island, NY

sPHENIX
ePIC

What I do

11/15/2022 3

I have been working with heavy ion beams since about 1985

First at CERN (WA80,WA93, WA98), spent a total of 11 years at CERN

Moved to Brookhaven Lab in 1996 for the PHENIX experiment that started taking data in 2001

Was the data acquisition coordinator and also part of the offline group for PHENIX

Last PHENIX data taken in 2016

Since then we have been building the successor experiment “sPHENIX”, again DAQ coordinator

Member of the (since disbanded) medical imaging group at BNL, Medical imaging (“RatCAP”)

Also the convener for the DAQ working group for the since accepted “ECCE” experiment proposal for
the future Electron-Ion Collider at BNL (around 2031) – since renamed to “ePIC”

the sPHENIX DAQ in one slide J

11/15/2022 4

Rack Room
On Detector Rack Room

DCMDCMDCMDCM2
SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX
Buffer Box

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

To
HPSS
(Computing
Center)

100+ Gigabit
Crossbar
Switch

The sPHENIX data acquisition

What is “PetaScale”?

5

On the outside:
1KB = 1024 bytes
… MB… GB… TB
1TB = 1024 GB = 10244 Bytes = 1,099,511,627,776 Bytes
1 PB = 1024 TB…
Then comes exa, zetta, yottabyte…

BTW: if someone tries to tell you that a Gigabyte is 1,000,000,000 bytes, you are talking to a
disk manufacturer sales guy who wants the number to sound bigger!

So: PetaScale -> we are dealing with at least a PetaByte of data.

Let me throw out some numbers…

6

what Total Per year

My WA80 CERN Thesis Experiment 0.0007PB

All of CERN’s data before the LHC ~90PB

PHENIX Experiment 25PB

The LHC experiments collectively 200PB 30PB/year

sPHENIX (next year) 300PB 120PB/year 1PB/day

Hi-Lumi LHC ? 250PB/year?

NetFlix Storage ~10-20 PB

What is “a lot of data”? Changes over time

7

In 1986/87 it took us about 8 months to just reconstruct (not analyze) the data
from one year’s run
Today I could store the entire WA80 dataset on my home PC and analyze it in
maybe a week or less
Never listen to people telling you that you don’t get the data analyzed in time.
Take all the data you can get. Time is on your side.

An example

8

My opening slide of my presentation at the “Computing for High-Energy Physics” (CHEP)
conference in Mumbai, India (2006)
That was before the LHC started taking data. A PetaByte of data from one experiment was
unheard of then.

I got some good feedback
from the LHC crowd –
“thank you, we think we can
do it but didn’t have a proof-
of-principle”

What I’ll go through with you today

9

The “local” stuff at your experiment, university cluster, small computing center
• How to set up large file systems
• RAID, ZFS, Lustre, and all that
• HPSS and other tape libraries

Using clusters/farms efficiently
• Condor
• Using the grid
• Really large-scale computing efforts

Gotta start somewhere. Here’s my setup.

10

I don’t really know any High-Energy / Nuclear Physics/ other experiment that doesn’t have its
own local storage system (short term, hours / days)
permanent storage “somewhere else”

Rack Room
On Detector Rack Room

DCMDCMDCMDCM2
SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX
Buffer Box

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

100+ Gigabit
Crossbar
Switch

To permanent
storage and

near-line
processing

Why do we call those “BufferBoxes”?

11/15/2022 11

11

The data rate at a collider is “bursty” – high luminosity at the
begin of a store, then ”burning off” – change of a factor of 2

Even if not, you create your own data rate variation by
starting/stopping/ fixing/ changing parameters

This Buffer boxes allow us to send the average, rather than the
peak rate through the WAN

That is the largest piece of local storage that I have.

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

100+ Gigabit
Crossbar
Switch

2016 (last PHENIX run)
beam intensity over a
week

Average

Some Pictures

12

Disk Enclosure (102 14TB disks)
Network switch

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

100+ Gigabit
Crossbar
Switch

BufferBoxes

Let’s start small (let’s make like 50-100 TB storage)

13

Take a modern PC
Pretty much any modern PC these days has slots for NVME disks, and a bunch of SATA
disks
NVME is what I use for the system disk, home disk (where needed) etc
Less than 10, 20 TB “on a budget” – use SSDs (2022 ballpark: 10cts/GB)
Larger than that – use spinning disks as large as you can afford them (~ 2cts/GB)
Say, 6 x 16TB = 106 TB raw disk capacity (~$300/disk, $1800)
Call this $3500 for a not-too-shabby but bare-bones machine like that, make 10, $35K gives
you about a PetaByte
This is often referred to as “JBOD” – “just a bunch of disks”.

Now what?

RAID

14

“Redundant Array of Independent Disks”
Cheapest way to get large storage sizes AND speed
Break up files written into chunks and send them to different disks, distribute I/O across
many disks.

One disk ~ 150MB/s give or take (spinning) or 400MB/s (SSD) or 2000MB/s (NVME)
$ SSD / $ Spinning = ~5 so take 5x the disks, 150MB/s x 5 > 400MB/s (SSD)
You win! But that’s not all.

File

RAID splits file in “chunks”

Each chunk goes to a different disk

Raid “levels”

15

This is not a raid tutorial, so I’ll be brief here
This is the “Redundant” part -

Use additional disks for parity or other recovery mechanisms
Survive the loss of one, two, or more disks without losing data
Replace the failed disks, RAID rebuilds itself with a small performance hit, all new

With RAID 5 you lose the capacity of one disk for parity, lose 2 disks with Raid 6

RAID 0 (stripe)

RAID 5

RAID 6

Mirror

No redundancy

Can lose 1 disk

Can lose 2 disks

Both disks hold the exact same data

Raid Technologies

16

Hardware raid – use actual hardware (Silicon) to manage the raid array
Many Vendors (3Ware, Adaptec, IBM, …)
Disadvantage: You can’t bug-fix Silicon, and it’s still proprietary
Today there is not much need for hardware RAID since by now the software has become faster
Software RAID gives more “peace of mind” – data not behind a black box

$ lspci
. . .
09:00.0 RAID bus controller: Adaptec AAC-RAID (rev 09)

“md” RAID (mdadm)
Oldest technology, mature, the workhorse
technology for software RAID
Set up in minutes
Lots of expertise on the internets
“RAID Write Hole” unsolvable problem

“zfs” RAID (zpool)
Ground-up redesign
No “RAID Write Hole”
More flexible setups
Going mainstream quickly
If you start new, it’s the way to go

Making RAID

17

The other day I set up a new modest-sized database server
4 1TB SSDs with a “raid 5” setup
Gave me an opportunity to show this here – I made a throwaway “md”
array:

(-C = create, -n 4 = 4 disks, raid5, name, list constituent disks). Easy!
Admired it for a bit, then took it down, set up zfs (what I had really
wanted)

mdadm -C -n 4 -l raid5 /dev/md0 /dev/sd{a,b,c,d}

Making ZFS RAID

18

That’s my new database server!

zpool create db raidz /dev/sd{a,b,c,d}
df -h /db
Filesystem Size Used Avail Use% Mounted on
db 2.7T 1.7G 2.7T 1% /db

mount | grep /db
db on /db type zfs (rw,xattr,noacl)

Lustre (and Zeph)

19

Remember, RAID allows you to “stripe” your I/O across multiple disks
You gain throughput (and data protection).
Lustre takes this same concept to multiple file servers
Same idea, distribute I/O across multiple servers, gain I/O capacity and
(additionally) network capacity
Else this works pretty much like RAID, break up files into chunks, distribute
across file servers.
Lustre is open-source, Zeph is fee-based from RedHat (pretty much the same
concept)

Lustre

20

bbox0 bbox1 bbox2 bbox3 bbox4 bbox5

mgs00

600 disks total, 60 10-disk RAID6, 12 warm spares

Disk Enclosure (102
14TB disks)

BufferBoxes

10-disk RAID6

Permanent Storage – we stay with tape!

21

You might think that in 2022, a lot of an experiment’s dataset would be “held online”, that is,
on disk somehow
The argument goes the other way – if you only take what you can keep on disk, you are not
maxing out your experiment’s capacity
• No shortage of proposals and attempts to make super-large disk arrays but keep most of

the disks powered down (“tape on disk”) – these proposals get routinely shot down
• Or use a “tape” library and have it move SSDs or traditional disks instead
• The motivation seems to, one way or another, eliminate tapes – tapes sound so 1990!
But that’s not true!
Nothing beats tape for large-scaler datasets. Not by a long shot
A tape cartridge is, after all, just a dense block of plastic
No SSD, no traditional disk can stand the g-forces that a tape library exerts on a tape
The cheapest and fastest way to store large data sets.

Permanent Tape Storage (HPSS)

22

Our tape libraries (being set up)

Our existing tape library

HPSS = High Performance
Storage System

Changing gears…

23

Analyzing Peta-Scale data

Analysis of peta-sized data

24

The operational words here are “parallel” and “farm”
Get many – as much as possible identical – farm nodes that can all do the same
Break up your work into “small” chunks – a few wall-clock hours to 2 days or so
Very often: one raw data file worth
Then hand out such a quantum of work to each node
That’s how virtually any large-scale processing is done these days

Some assumptions here:
• Each quantum can be processed independent of the others
• Not always the case – sometimes the analysis of file n depends on the results of file n-1

• Then it’s getting a lot more complicated… too much for today

Condor

25

The goal is to maximize the load for each machine, each CPU core @100% all the time
100% not realistic, but 90% is achievable. Idle computers are expensive!
“Use it or lose it" policies of many computing centers
We need a job management system that keeps all farm nodes occupied
Usually you want at least x10 more jobs than slots, 90% waiting their turn

The most commonly used system (best known, free) is Condor

https://htcondor.com/

Other system are around, I’ll concentrate on Condor

https://htcondor.com/

Condor – the principle

26

Each participant worker PC says how much it can “take”, register with a central scheduler
For example, 64 CPU cores –> 64 “job slots” – often set to less to boost the memory per
core
Each slot advertises what it “can do” – like how much memory, scratch disk, etc it can
guarantee (“ClassAds”), and so on
Then you submit jobs that specify the requirements (for example, >1G memory, > 10G disk
space, and on and on)
Then your job gets matched with a slot that satisfies the requirements, and then runs
You can analyze how much resources your job actually used, and tweak this – sometimes
you find that there is not a single slot that can satisfy your initial requirements!
Then your job is executed according to its priority and place in queue (pretty much like
boarding a plane)

ClassAdd and simple job example

27

HasTDP = true
TotalLoadAvg = 17.55
HasMPI = true
JavaMFlops = 2100.275391
MachineResources = "Cpus Memory Disk
Swap"
has_ssse3 = true
Disk = 7043048
OpSysMajorVer = 7
OpSysShortName = "RedHat"
HibernationSupportedStates = "S4"
SlotID = 1
OpSysLegacy = "LINUX"
SlotTypeID = 0
Rank = 0.0
MyType = "Machine"
JobUserPrioPreemptions = 0
HasVM = false
TotalSlotCpus = 1
LoadAvg = 1.0
Cpus = 1
TotalVirtualMemory = 464940056
TotalMemory = 191919
. . .

Executable = /home/sphnxpro/mlp_transfer/transfer.sh
Universe = vanilla
Initialdir = /home/sphnxpro/mlp_transfer
Queue

transfer.job

$ condor_submit transfer.job

There can be hundreds of fields.

You usually only ask for very few, if any

Again, keep it simple first

28

Here is a PC (one of my BufferBoxes) that stands up 6 slots just confined to itself

Why? Well, it’s a super-convenient way to regulate the number of processes that are
executing concurrently - submit 100,000 but only 6 run, all others wait their turn
Here: I want to transfer hundreds of files to storage, but only 6 at a time
I use this a lot even on my laptop – 8 cores, make 6 slots, manage ”for all” jobs easily!

$ condor_status
Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@bbox0 LINUX X86_64 Unclaimed Idle 1.000 31986 11+06:25:10
slot2@bbox0 LINUX X86_64 Unclaimed Idle 1.000 31986 11+06:25:42
slot3@bbox0 LINUX X86_64 Unclaimed Idle 1.000 31986 11+06:23:32
slot4@bbox0 LINUX X86_64 Unclaimed Idle 10.210 31986 11+06:18:00
slot5@bbox0 LINUX X86_64 Unclaimed Idle 1.000 31986 11+06:30:44
slot6@bbox0 LINUX X86_64 Unclaimed Idle 1.000 31986 11+06:33:10

Machines Owner Claimed Unclaimed Matched Preempting

X86_64/LINUX 6 0 0 6 0 0

Total 6 0 0 6 0 0

Giving parameters

29

You virtually always need to give parameters to your executable, and also
specify stdin and stderr files

This does absolutely not scale! Don’t do it this way
-a adds the input as if it had been given in the job file

Executable = /home/sphnxpro/mlp_transfer/transfer.sh
Universe = vanilla
Initialdir = /home/sphnxpro/mlp_transfer
Arguments = /lustre_bbox/bbox0/junk/seb04_junk-00000102-0000.evt
output = out.log
error = err.err
Queue

Giving dynamic parameters with -a

30

The “-a” switch acts as if what follows had been added to the job file

is completely equivalent to this

Executable = /home/sphnxpro/mlp_transfer/transfer.sh
Universe = vanilla
Initialdir = /home/sphnxpro/mlp_transfer
Queue

$ condor_submit transfer.job \
-a "Arguments = /lustre_bbox/bbox0/junk/seb04_junk-00000102-0000.evt” \
-a "output = out.log” \
-a "error = err.err"

Executable = /home/sphnxpro/mlp_transfer/transfer.sh
Universe = vanilla
Initialdir = /home/sphnxpro/mlp_transfer
Arguments = /lustre_bbox/bbox0/junk/seb04_junk-00000102-0000.evt
output = out.log
error = err.err
Queue

This allows you to….

31

… submit hundreds of files in one fell swoop

And go through the list of files and submit an individual job for each

$ cat submit_file.sh
#! /bin/bash

[-z "$1"] && exit

[-f "$1"] || exit

FILE=$(basename $1 .evt)
echo $FILE

condor_submit transfer.job \
-a "Arguments = $1" \
-a "output = log/${FILE}.log" \
-a "error = log/${FILE}.err"

$ for f in /data/files/*.evt ; do ./submit_file.sh $f ; done

Local farm clusters

32

This is an example from a few years ago when we were running medical imaging applications
In 2005 our medical-type folks would initially run the simulations to generate a “system matrix”
for the image reconstruction on desktop PCs, super-inefficient.
”It will take years to simulate the entire thing!”
I offered to use my experiment’s online monitoring cluster (about 600 cores) at a time when the
experiment wasn’t taking data for about two weeks or so
About 15,000 jobs
In a few days we got about 9 years worth of CPU time out of this
(easy math – with 600 cores each wall-clock hour gets you 600 CPU-hours)
And, after a day of setting up, it was “submit-and-forget”

BTW: A great example of synergy between people with different backgrounds!

Beware of “black holes”

33

Sometimes you have a mis-configured node where a job immediately fails
A missing library, missing installed support package, not enough memory, whatever
With 600 cores and 15000 jobs, 599 jobs start running
The 600th immediately fails on a black hole, but now that slot is free again
Next job starts there, fails again immediately, then the next, then the next
In this way you can get the bulk of your jobs to fail quickly

If you control the node, get it fixed. If not possible to fix, take it out of the cluster
Last resort, write a requirement in “not on that node”

Going global - the Grid

34

Idle machines are expensive

It has long been recognized that everyone wins when you pool resources more globally
Your cluster may be only 30% used this week, but you could need 150% the week after
So you open up your cluster to others, and others open up to you
Each side typically gives priority to their own jobs and take others when not fully used
Lots of flexibility to configure this, max jobs running time, mem usage, disk usage,…
Also, running in a “Sandbox” – a job is not allowed to see or access local storage or other
resources
That’s the idea of the computing grid – pool resources and everyone wins

Grid access/authentication

35

Each group (say, a university cluster) sets rules who is allowed to run jobs there
Completely impossible to do this on a user-by-user basis
Use a hierarchical system of ”Virtual Organizations” (VO), such as the ATLAS VO
Then your university (if it’s part of ATLAS) adds you to their local VO, which in turn is part of the
ATLAS VO (and perhaps others, or perhaps with intermediate VOs)
In this way, a huge VO such as ATLAS delegates the user authentication and each site trusts
the others
You get a Grid Certificate (a PK12-level key) that is your ”VO membership” card
(No time to go into that, that’s an hour or two by itself)

Many Grids for many purposes

36

Sometime real organizations (such as CERN), sometimes regions (like northern Europe) make
grids for specific purposes
Just a few logos I found in 60 seconds:

Going from local (before) to the Grid (Medical Imaging)

37

Over time my initial 600 cores in my experiment’s online cluster grew to about 2000
The real problem was the “seasonal availability” of the cluster to our friends/collaborators
The system is not available half of the year when we were running
So we decided to apply to join a VO on the Open Science Grid (OSG)
We could get about 1000 CPUs / day there when we needed it

And then a REALLY BIG project came along (for sPHENIX)

38

“Can we simulate 5 trillion events?”
• This is the odd-one-out large-scale simulations project
• Determining the various contributions to the muon production (Drell-Yan, Heavy Flavor,

combinatorial) in the forward region
• Looking for (simulated) events which have one or more muons in the extreme forward

region (1 < h < 5) with the Pythia event generator
• These are somewhat rare processes (~1.4*10-3)
• No way to influence the event generator to only produce desired event topologies – leads

to severe biases
• brute-force crank through events and discard the unwanted topologies
• This gives this project an unusually low IO/CPU ratio – a few 10s of MB per job

And then a REALLY BIG project came along (for sPHENIX)

39

Work Breakdown
Typical “sweet spot” is to run jobs for ~10-12 hours

Optimum was found to be 10 million events/job (try and error)

Half a million jobs!

No way to do this manually!

Challenges

The earlier PET/Medical Imaging-related simulations only had a simple
monolithic executable, a few scripts and data files, and 20,000 jobs or so

Here we are dragging an entire framework along
How to get the framework to the execution node?
How to get the data back “home”
How to automate everything that it remains a manageable endeavor that leaves

time for my day job?
Target was a commitment of 10 days setup + 3 hours/week for 10 weeks of

routine running
Also, “just me” – with no offense to anyone, automation beats more warm

bodies

40

How to bring the project to and from the remote node

“to” is, in principle, the easier part
Looked at cvmfs, but… not set up for us fully at the time, not agile enough by

far
No shortage of anonymous – not authenticated – ways to pull data from

somewhere. wget, ftp, git,…
Getting data back to RCF is harder – no non-authenticated way to transfer, no

safe method to furnish a job with the proper credentials (usually ssh keys)
Settled on condor file transfers for both directions
Data flowing back to the submitter host’s /local-scratch
I/O levels well below “the radar”

41

In numbers…

A job needs about 1550MB in executables and shared libraries to run
All are 64bit binaries
Put a “support bundle” together with all required files, bzip2-compressed to

17% -> 253MB
Output is just a few 10’s of MB
Output flowing back to submitter host is getting rsync’ed back to home

continuously, every 2hrs or so (ssh-agent is your friend)
Got into a routine to delete files from SH Wednesdays and Sundays – “safe

delete procedure”
Got close to quota only once when I was alone on the OSG for a while [a good

problem to have…]

42

How much CPU?

This is a snapshot close to the end of the project.
Didn’t keep all log files so I cannot run the final tally

$ find log/ -name ``*.log'' -exec grep 'Total Remote Usage' {} \; | \
sed -e 's/,//g' | awk '{print $3}' | \
awk -F: '{X += ($1 *3600 + $2*60 + $3)/3600} END {print X}'

1.34523e06

$ bc -lq

1345230 / 24
56051.25000000000000000000
1345230 / 24/365
153.56506849315068493150

43

1345230 hours
56051 days

153 years

The OSG was very proud of this accomplishment

Of course our OSG marathon got
noticed…

44

Summary

45

Peta-Scale setups are not so much of an issue, can be done for a large university group
File systems – if it’s all the same, look into Lustre

Local setups - use condor to set up cluster
Large setups – talk to your experiment/organization to join a VO to access the Grid

All the mechanics can easily be mastered in a week, then you have enough experience

I haven’t talked about data center tiers, closest-copy access strategies, etc etc
There would be a lot more ground to cover in a dedicated workshop

Thank you!

Backup

46

Condor job (specific example as illustration)

InitialDir = /local-scratch/purschke/pythia/output

Executable = run.sh
Universe = vanilla

when_to_transfer_output = ON_EXIT
notification = Never

should_transfer_files = YES

transfer_input_files = ../files.tar.bz2

output = x.out
error = x.err
Log = x.log

requirements = ((OpSysAndVer == "rhel6") || (OpSysAndVer == "SL6") || (
OpSysAndVer == "CentOS6"))

+ProjectName = "sPHENIX"
queue

47Martin L. Purschke, BNL

#! /bin/sh
export JOBNR=$1
[-z "$JOBNR"] && JOBNR=0
NAMEEXT=$(printf "%08d\n" $JOBNR)

mkdir run_area
cd run_area
time tar xfj ../files.tar.bz2
rm -f ../files.tar.bz2

export LHAPATH=$_CONDOR_SCRATCH_DIR/run_area/PDFsets
export
LD_LIBRARY_PATH=$_CONDOR_SCRATCH_DIR/run_area/install/lib:$_CONDOR_SCRATCH_DIR/run_area/sys
libs:$_CONDOR_SCRATCH_DIR/run_area/root/lib
export ROOTSYS=$_CONDOR_SCRATCH_DIR/run_area/root
PATH=$ROOTSYS/bin:$PATH

ldd $_CONDOR_SCRATCH_DIR/run_area/syslibs/libfun4all.so > ldd.txt 2>&1
if grep -q "not found" ldd.txt; then

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$_CONDOR_SCRATCH_DIR/run_area/oslibs
fi

root -b -q phpythia.C\(10000000,\"pythia_MB.cfg\",1\)
if [-e phpythia.root] ; then

mv phpythia.root ../phpythia_single_${NAMEEXT}.root
mv phpy_xsec.root ../phpy_xsec_single_${NAMEEXT}.root

fi
cd ..
rm -rf run_area

run.sh

48Martin L. Purschke, BNL

