
Tips for presenting a scientific work Some simple suggestions & hints!

Patrick Le Dû

patrickledu@me.com

Dakar school - November 15th, 2022

Goals of this presentation

- Communicate your work is very important
 - Paper writing
 - Presentation
- Some simple 'personal' suggestions & guidelines extracted from my own experiences illustrated with some typical exemples (Some extracted on web site)

Writing a paper

Structure of a Paper

Scientific writing follows a rigid structure - a format developed over hundreds of years

Consequently, a paper can be read at several levels:

- Some people just will refer to the title
- Others may read only the title, abstract,, summary and conclusions.
- Others will read the paper for a deeper understanding

Authors Listing

- ONLY include those who have made an intellectual contribution to the research
- OR those who will publicly defend the data and conclusions, and who have approved the final version
- Order of the names of the authors can vary from discipline to discipline
 - In some fields, the corresponding author's name appears first

Title

- Describes the paper's content clearly and precisely including keywords
- Is the advertisement for the article
- Do not use abbreviations, achronyms and jargon
- Search engines/indexing databases depend on the accuracy of the title - since they use the keywords to identify relevant articles

Abstract

- Briefly summarize (often 150 words) the problem, the method, the results, and the conclusions so that
 - The reader can decide whether or not to read the whole article
- Together, the title and the abstract should stand on their own
- Many authors write the abstract last so that it accurately reflects the content of the paper

See: The Structured Abstract: An Essential Tool for Research http://research.mlanet.org/structured_abstract.html

Methods

- Provide the reader enough details so they can understand and replicate your research
- Explain how you studied the problem, identify the procedures you followed, and order these chronologically where possible
- Explain new methodology in detail; otherwise name the method and cite the previously published work
- Include the frequency of observations, what types of data were recorded, etc.
- Be precise in describing measurements and include errors of measurement or research design limits

Introduction

- Clearly state the:
 - Problem being investigated
 - Background that explains the problem
 - Reasons for conducting the research
- Summarize relevant research to provide context
- State how your work differs from published work
- Identify the questions you are answering
- Explain what other findings, if any, you are challenging or extending
- Briefly describe the experiment, hypothesis(es), research question(s); general experimental design or method

Results

- Objectively present your findings, and explain what was found
- Show that your new results are contributing to the body of scientific knowledge
- Follow a logical sequence based on the tables and figures presenting the findings to answer the question or hypothesis
- Figures should have a brief description (a legend), providing the reader sufficient information to know how the data were produced and exhaustive caption

Discussion/Conclusion

- Describe what your results mean in context of what was already known about the subject
- Indicate how the results relate to expectations and to the literature previously cited
- Explain how the research has moved the body of scientific knowledge forward
- Do not extend your conclusions beyond what is directly supported by your results - avoid undue speculation
- Outline the next steps for further study

Citations & References

- Whenever you draw upon previously published work, you must acknowledge the source
- Any information not from your experiment and not 'common knowledge' should be recognized by a citation
- How references are presented varies considerably refer to notes for authors for the specific journal
- Avoid references that are difficult to find
- Avoid listing related references that were not important to the study
- Anything taken from the web should be acknowledge in particular pictures and presentation
- WARNING: Plagiarism tools are commonly used so any 'stolen' material can be easily traced

Components of a Paper

Section	Purpose		
Title	Clearly describes contents		
Authors	Ensures recognition for the writer(s)		
Abstract	Describes what was done		
Key Words (some journals)	Ensures the article is correctly identified		
	in abstracting and indexing services		
Introduction	Explains the problem		
Methods	Explains how the data were collected		
Results	Describes what was discovered		
Discussion	Discusses the implications of the findings		
Acknowledgements	Ensures those who helped in the research are recognised		
References	Ensures previously published work is recognised		
Appendices (some journals)	Provides supplemental data for the expert		

Goal of this presentation

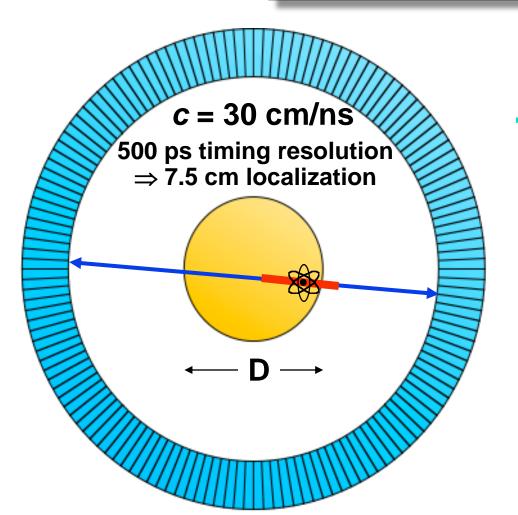
- Today, it is very easy to prepare a presention with PPT BUT its depends of:
 - The context (school, conference, workshop ...)
 - The audience (students, engineers, scientists, mixed)
 - The level of the majority of the audience.
 - Depends of what message you want to give (results, overview, lessons)
 - Be carefull with animation
 - Style of presentation and content → example later
- Looks at the time you have
 - Number of slides
 - 1 per min in average
 - Quantity of information in a slide
 - Depends on type of information to explain
 - Isolate clearly what is important
 - Graphics, tables, text, images

• ..

Fast Timing and TOF in PET Medical Imaging

William W. Moses

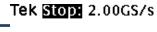
Lawrence Berkeley National Laboratory
October 15, 2008

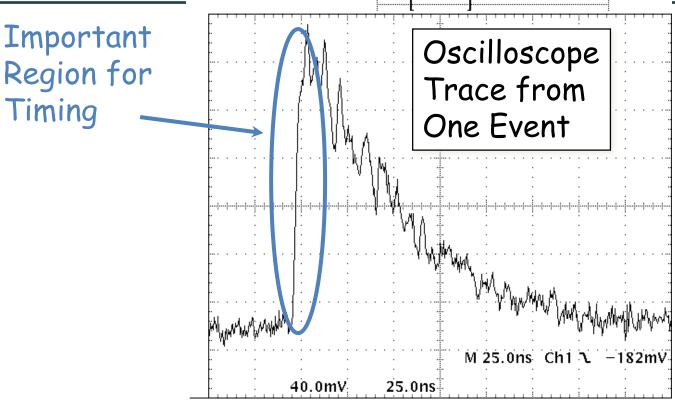


- History
- Present Status
- Future

- This work was supported in part by the U.S. DOE (contract No. DE-AC02-05CH11231) and in part by the NIH (NIBIB grant No. R01-EB006085).
- Thanks to M. Ullisch and W.-S. Choong of LBNL, M. Casey, J. Young, and B. Bendriem of Siemens Medical Solutions, and Y. Hämisch of Philips.

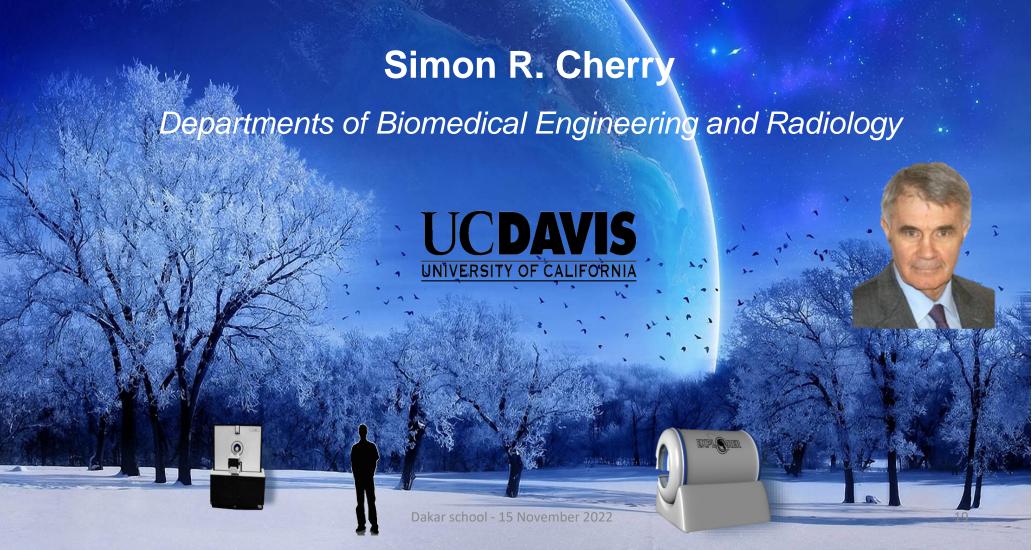
Time-of-Flight in PET


- Can localize source along line of flight.
- Time of flight information reduces noise in images.
- Variance reduction given by 2D/c∆t.
- 500 ps timing resolution
 ⇒ 5x reduction in variance!

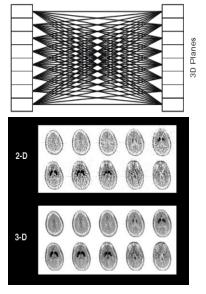

Time of Flight Provides a Huge Performance Increase!
 Largest Improvement in Large Patients

EXPLORER

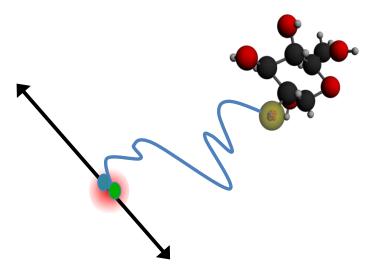
Raw Signal


From Photomultiplier Tube

- · Small Signal Level 0.000000511 TeV
- · Small Fraction of Scintillation Light in Leading Edge
 - · Fundamental Limit Due to Statistical Fluctuations

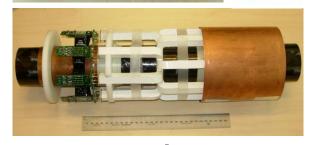

Adventures in the Nuclear Medical Imaging Wonderland

Positron Emission Tomography


MWPC PET

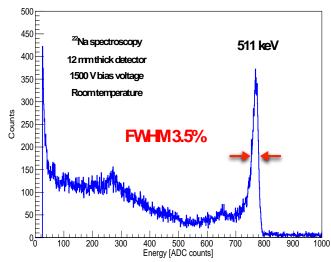
3-D PET

Small-animal PET



Dakar school - 15 November 2022

PET/MRI

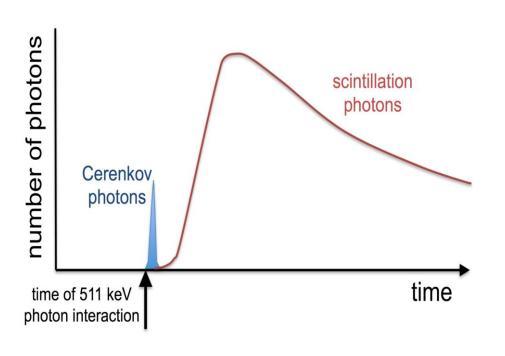


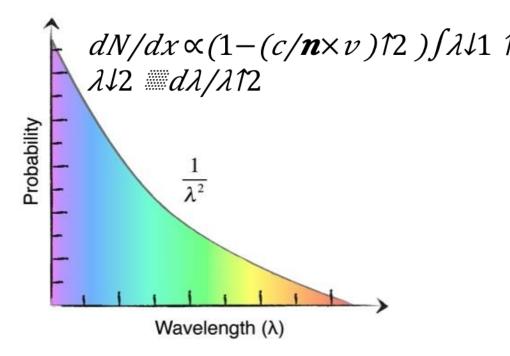
Depth-Encoding Detectors

Thallium Bromide

Improve detector efficiency

Cross-Section (cm ⁻¹)	Total	Photoelect ric	Compton
L(Y)SO	0.82	0.28	0.54
BGO	0.89	0.40	0.49
TIBr	0.95	0.42	0.53



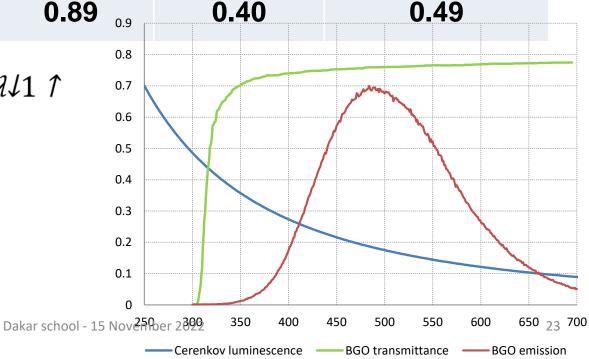

Friday 09:30 R15-5 Ariño-Estrada et al.

Using Cerenkov Radiation for Time-of-Flight PET

Korpar et al, *Nucl Instr Meth* A654; 532-8 (2011) Brunner et al, *IEEE Trans Nucl Sci* 61; 443-7 (2014) Lecoq et al, *IEEE Trans Nucl Sci* 61; 229-34 (2014) Somlai-Schweiger et al, *Med Phys* 42; 1825-35 (2015)

Needs:

- Dense materials with high index of refraction and high transparency in blue/UV
- Photodetectors with high blue/UV


Bismuth Germanate

Improve detector efficiency

Cross-Section (cm ⁻¹)	Total	Photoelect ric	Compton
L(Y)SO	0.82	0.28	0.54
BGO	0.89 _{0.9}	0.40	0.49

 $dN/dx \propto (1-(c/\mathbf{n} \times v) \hat{1}2) \int \lambda \hat{1}1 \hat{1}$ $\lambda \hat{1}2 = d\lambda/\lambda \hat{1}2$

n=2.15

Few words about about Posters What Makes a Good Poster?

- TOP: Title, Names (s)photo, mail and institute/university logo
 - Title is short and draws interest
 - Includes acknowledgments, your name and institutional affiliation
- Not too much information:
 - Separate clearly text, results and figures
 - Consistent and clean layout
- Important information should be readable from about 10 feet away
- Word count of about 300 to 800 words
- Text is clear and to the point
- Use of bullets, numbering, and headlines make it easy to readEffective use of graphics, color and fonts