

Stefan Ritt, Paul Scherrer Institute, Switzerland IEEE NPSS Workshop on Applicatioins of Radiation Instrumentation November 2022, Dakar, Senegal

Cosmic rays

- Energetic particles (mainly protons and alpha particles) generated in solar eruptions and astrophysical processes even outside our Milky Way
- Some particles have much higher energies than those possible with the biggest man-made accelerators.
- Used as messengers to understand cosmic processes such as supernovae
- Primary cosmic rays generate secondary rays in the upper earth atmosphere
- Most showers are absorbed by atmosphere
- Some muons (μ) make it down to earth

Fun fact: Time dilation

- Muon lifetime: $t_{1 / 2}=2.2 \times 10^{-6} \mathrm{~s}$
- Thickness of earth atmosphere: $\mathbf{\sim 1 0} \mathbf{~ k m}$
- Average travel distance of a muon having speed of light:

$$
d=t_{1 / 2} * c=2.2 \times 10^{-6} \mathrm{~s} * 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=660 \mathrm{~m}
$$

- Special relativity predicts time dilation

$$
t^{\prime}=\frac{t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

t' Time measured from an observer outside the frame of reference.
t Time measured from an observer inside the frame of reference.
v Speed of the object.
c Speed of light

$$
\dagger_{1 / 2}^{\prime}=2.2 \times 10^{-6} \mathrm{~s} / \mathrm{sqrt}\left(1-0.999^{2}\right)=49 \times 10^{-6} \mathrm{~s}
$$

$$
\text { Lorentz factor } \gamma=22.4
$$

- Modified travel distance:

$$
d=\dagger^{\prime}{ }_{1 / 2} * 0.999 * c=49 \times 10^{-6} \mathrm{~s} * 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=14.7 \mathrm{~km}
$$

Direction of cosmic muons (CM)

- CM are anisotropic
- CM loose energy proportional to thickness d of atmosphere
- At q=90 deg. rate goes to zero (flat earth approximation)

$$
\rightarrow \begin{aligned}
& d_{0} / d=\cos (\theta) \\
& d=d_{0} / \cos (\theta) \\
& r(\theta)=r_{0} / d=r_{0} * \cos (\theta)
\end{aligned}
$$

- Better approximation (earth curvature, inhomogeneous atmosphere, muon scattering, ...)

$$
r(\theta)=r_{0} * \cos ^{2}(\theta)
$$

- Empirical formula, not exactly derived

Detection of Muons

Lab goals

1. Configure measurement
2. Measure speed of cosmic muons
3. Measure direction of cosmic muons

Connect oscilloscope

Setting up the oscilloscope

Setting high voltage for SiPM to 54 V

General
Apply changes to all boards
Trigger
Level: -32 mV
Delay: -94 ns

Shaping: $\square 12.5 \mathrm{~ns}$
Holdoff: 0 ms
\square Enable zero suppression
\square Enable trigger output
$R X / T X: ~ U A R T \quad \checkmark \quad R X \square X$
Type: Onormal Oauto
Source: Oint ext
Trigger Pattern
Analog Front-end
Gain: $50 \vee \square$ PZC $1 \vee$ Mode: ODRS OADC OTDC Readout enable: \square DRS \square ADC \square TDC \square TRG Input range: $-0.5 \mathrm{~V} . . .+0.5 \mathrm{~V} \vee$
\square Enable calibration clock
\square Connect inputs to calib. source
Power calib. source
Power amplifiers

Sampling Speed

5 GSPS Actual: 4.965 GSPS

Define time measurement

Zoom to -5 ns to +5 ns

Measure Speed of Cosmic Muons

Measure speed of muons

Case B

 Measure 300-500 events write down mean

Difference Measurement

Case A:

$$
\Delta t_{\mathrm{A}}=\left(\mathrm{t}_{0, \mathrm{~A}}+\mathrm{t}_{\mathrm{c} 0}\right)-\left(\mathrm{t}_{2, \mathrm{~A}}+\mathrm{t}_{\mathrm{c} 2}\right)=\mathrm{d} / \mathrm{v}
$$

Case B:

$$
\Delta \mathrm{t}_{\mathrm{B}}=\left(\mathrm{t}_{0, \mathrm{~B}}+\mathrm{t}_{\mathrm{c} 0}\right)-\left(\mathrm{t}_{2, \mathrm{~B}}+\mathrm{t}_{\mathrm{c} 2}\right)=\mathrm{d} /(-\mathrm{v})
$$

Difference:
$\Delta t_{A}-\Delta t_{B}=\left(t_{0, A}+t_{0, B}\right)-\left(t_{2, A}+-t_{2, B}\right)=2 d / v$
$\rightarrow v=2 d /\left(\Delta t_{A}-\Delta t_{B}\right)$

Task: measure v in $\%$ of $c\left(=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

Measure Direction of Cosmic Muons

Measure direction of cosmic muons

- Set angle $=0,10,20 \ldots 90$ deg.
- Measure 5 minutes
- Write down counts
- Plot normalized counts vs. angle

Cosmic muon rate vs. zenith angle

Questions to ask yourself

-Why does the rate do not go to zero at 90 deg.?

- Why are the points not on a smooth line?
- If I measure again, will I get exactly the same points?
- How could the experiment be improved?

