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2 Principles of Detection of Ionizing Radiation

1. Detectors convert property to be measured directly into electrical signal   → position, time

2. Indirect via light generation in scintillator → energy, time

2Silicon detector Wire chamber Photomultiplier



Oscilloscope

Modern Digital Oscilloscopes
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Analog-to-Digital Conversion
ADCs & More

4



Digitization: Peak-sensing ADC
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• Technique to digitize fast
signals with slow ADCs

• Needs reset after each signal
• Mainly historical



Digitization: Charge integration
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Charge
• Many detectors have a 

proportionality between 
charge and particle energy

• Noise immunity
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Digitization: Waveform sampling
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ADC Type Resolution 
(bits)

Conversion 
rate

Dual Slope 12-20 100 sample/s

Successive 
approximation

8-18 10 Msample/s

Flash 4-12 10 Gsample/s

Pipeline 8-16 1 Gsample/s

Delta-sigma 8-32 1 Msample/s

Sample waveform at discrete points (sampling rate) and extract features in digital world



Digitization: Flash ADC 1-bit and 2-bit
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Digitization: Flash ADC n-bit

▸ Flash ADC very fast

▸Requires 2n comparators

▸ Typically <=8 bit resolution
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Digitization: Successive approximation ADC
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Digitization: Pipeline ADC

▸ Combine several flash ADCs with 
successive approximation logic

▸ Only requires 4-Bit flash ADC

▸ Can convert one sample in each 
clock cycle

▸ Has a latency depending on the 
number of pipeline stages

▸ Most common technology for fast 
ADCs b)
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→ 101110



ADC Datasheets
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Nyquist-Shannon Sampling Theorem

fsignal < fsampling /2

fsignal > fsampling /2

Only signals with 
frequencies below 
half the sampling 
frequency can be 
perfectly sampled.

Then the original 
signal can be 
recovered from 
the discrete 
sampling points.
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Limits of waveform digitizing

▸Aliasing occurs if fsignal > 0.5 * fsampling

▸Features of the signal can be lost (“pile-up”)

▸Precise time measurement and good energy resolution 
need very fast high resolution ADCs
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What are the fastest detectors?

• Micro-Channel-Plates (MCP)

• Photomultipliers with thousands of tiny channels (3-10 mm)

• Typical gain of 10,000 per plate

• Very fast rise time down to 70 ps

• 70 ps rise time → 4-5 GHz BW → 10 GSPS

• SiPMs (Silicon PMTs) are also getting < 100 ps
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J. Milnes, J. Howoth, Photek



Can it be done with FADCs?
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• 8 bits – 3 GS/s – 1.9 W → 24 Gbits/s

• 10 bits – 3 GS/s – 3.6 W → 30 Gbits/s

• 12 bits – 3.6 GS/s – 3.9 W → 43.2 Gbits/s

• 14 bits – 0.4 GS/s – 2.5 W → 5.6 Gbits/s

1.8 GHz!

24x1.8 Gbits/s

• Requires high-end FPGA
• Complex board design
• High FPGA power

V1761: 2 Channels, 4 GS/s, 10 bits

• Costs: 1-10 k$ / channel

• What about 1000+ channels?



Digitization: Application Specific Integrated Circuit (ASIC) for 
Waveform Sampling: Switched Capacity Arrays (SCA)
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Time Stretch Ratio (TSR)
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Typical values:

d ts = 0.5 ns (2 GSPS)

d td = 30 ns (33 MHz)
→ TSR = 60



Triggered Operation
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sampling digitization

lost events

sampling digitization

Sampling Windows * TSR

Chips usually cannot sample during readout ⇒ “Dead Time”
Technique only works for “events” and “triggers”

Dead time = 

Sampling Window ∙ TSR

(e.g. 100 ns ∙ 60 = 6 ms)



How to measure timing best?

21J.-F. Genat et al., arXiv:0810.5590 (2008) D. Breton et al., NIM A629, 123 (2011)



How is timing resolution affected
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How is timing resolution affected?
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D
=D

U Du fs f3db Dt

100 mV 1 mV 2 GSPS 300 MHz ∼10 ps

1 V 1 mV 2 GSPS 300 MHz 1 ps

1 V 1 mV 10 GSPS 3 GHz 0.1 ps

today:

optimized SNR:

next generation:

- high frequency noise
- quantization noise



First Switched Capacitor Arrays
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IEEE Transactions on Nuclear Science,
Vol. 35, No. 1, Feb. 1988

50 MSPS in 

3.5 mm CMOS process 



Switched Capacitor Arrays for Particle Physics
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STRAW3 TARGETLABRADOR3 AFTER NECTAR0SAM

E. Delagnes
D. Breton
CEA Saclay

G. Varner, Univ. of Hawaii

• 0.25 mm TSMC
• Many chips for different projects

(Belle, Anita, IceCube …)

• 0.35 mm AMS
• T2K TPC, Antares, Hess2, 

CTA

H. Frisch et al., Univ. Chicago

PSEC1 - PSEC4

• 0.13 mm IBM
• Large Area Picosecond 

Photo-Detectors Project 
(LAPPD)

www.phys.hawaii.edu/~idlab/ matacq.free.fr psec.uchicago.edu



DRS4 Chip

▸Developed at PSI in 2008 together
with R. Dinapoli

▸5 Gsamples/s, 12 bits resolution,
8+1 channels, 17.5 mW/channel

▸Time measurements down to 10 ps
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DRS4 Chip

Evaluation Board

WaveDREAM Board

9000+ channels of MEG II, PSI



Pulse shape discrimination
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Applications of SCA
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Gamma-ray astronomy 

Magic

CTA

Antarctic Impulsive 
Transient Antenna
(ANITA)

320 ps

IceCube
(Antarctica)

Antares
(Mediterranian)

ToF PET (Siemens)



Conclusions

▸SCA technology offers 
tremendous opportunities

▸Several chips and boards 
are on the market for 
evaluation

▸New series of chips on the 
horizon might change front-
end electronics significantly
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