Photo detectors




Light detection
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How can we detect light

We need ENERGY to excite the micro system

How can we detect weak light
Do we need accumulate the energy enough to excite?

No.
Energy is quantize as photon.
Count the photon.



Quantized Energy flow

Energy flow is quantized. Intensity is the number of photon
hw
B hw
/
' hw
- hw
; i ho W

Max Planck
The Nobel Prize in Physics 1918

Prize motivation: "in recognition of the services he rendered to the
advancement of Physics by his discovery of energy quanta"

‘P ":(f:;:» from the Nobel
Foundation archive.



photoelectric effect

Albert Einstein
The Nobel Prize in Physics 1921

Prize motivation: "for his services to Theoretical
Physics, and especially for his discovery of the law of
the photoelectric effect"

‘ (T

Photo from the Nobel

Foundation archive. ‘




binding energy

The Feynman Lectures on Physics, Volume |

Chapter 38.The Relation of Wave and Particle Viewpoints 38—4The size of an atom
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197 eV nm hc = 197 MeV fm
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2 eV = 600 nm (Visible light)
1 keV = 1.2 nm (~size of atom)
20MeV = 60 fm (~size of atomic nuclei)



chemical energy

Battery voltage is related to the chemical interactions.
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Alkaline manganese Ni-Cd
battery (1.5V) battery (1.2V)
MnQOz2+ H20 + Zn 2N1OOH + Cd + 2H20

— Mn(OH) 2 + ZnO < 2Ni(OH)2 + Cd(OH)2
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Energy of gas molecular is proportional to the temperature.

K is Boltzmann constant 8.6171E-5 eV/K

at room temperature, it is about 26 meV = 0.03 eV

It is much lower than the ionization energy



Gravitation

Free fall of 1 kg from Tm high

mgh = ~10J=6 x 101° eV

It is large energy but each nucleon may get ---

6x101PeV /(1000 x6 x 1023) =1 x 107 eV = 100 neV

Compare to other Energy, it is several order smaller.



Energy Scaleionizing radiation

Types of Electromagnetic Waves

Chemical Heat Gravity

Visible light
Energy

—> 101 108 108 104 102 1 102 104 10® 10%® 101° 1072 (eV)

X-rays, y-rays Electric waves

(Generally, y-rays come from
within a nucleus, and X-rays
come from outside a nucleus.) rays
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ionizing radiation

https://www.env.go.jp/en/chemi/rhm/basic-info/1st/index.html



Photon Counting

How many photon from scintillator?

Visible Light Photons

Gamma Ray

Radiation Source Scintillator Crystal
(converts gamma rays
into visible light)

Gamma Ray > Visible Light

LYSO scintillating crystal causes 16,000 photon for 511keV gamma rays.
We see ~one direction out of 6 (L-R,U-D,F-B) direction.
So ~2,670 photon will come out.
LYSO is 2mm x 2mm but Sensoris Tmm x Tmm. ltis 1/4
Consequently, only 670 photon will hits the sensor.



The number of photon

How many photon are we seeing?

Visible light is ~2eV leV =1.6 x 107"]

| 1019 1
IW =1.J/g= V/s = — —eV =3x10"e/s
J/s= Tox10v°Y/S =15 * 20V/ 5 /s 8 /

0.1s flush ~ 3x10'7 photon

r

R

I

7T7’2

41 R?

r 2 T
Int eye = (ﬁ) of probability

600 photon =1W flush 0.1s is seen in 22 km distance



PHOTOMULTIPLIER TUBES

Basics and Applications

>

FOURTH EDITION

HAMAMATSU
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https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/
documents/99 SALES LIBRARY/etd/PMT_handbook_ v4E.pdf
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Figure 4-2 (a): Typical spectral response characteristics of reflection type photocathodes



2.4 Electron multiplier (dynode)

As stated above, the potential distribution and electrode structure of a photomultiplier tube is designed to
provide optimum performance. Photoelectrons emitted from the photocathode are multiplied by the first
stage through the last stage (up to 19 stages) in the electron multiplier, with current amplification ranging
from 10 to as much as 10° times, and are finally sent to the anode.

Major secondary emissive materials'”>" generally used are alkali antimonide (Sb), beryllium oxide (BeO),
and magnesium oxide (MgO). These materials are coated onto a substrate electrode made of nickel, stain-
less steel, or copper-beryllium alloy. Figure 2-6 shows a model of the secondary emission multiplication of
an electron multiplier.
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Figure 2-6: Secondary emission model of electron multiplier



SECONDARY EMISSION RATIO (9)
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Figure 2-7: Secondary emission ratio
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Figure 3-3: Basic photomultiplier tube operation using a voltage-divider circuit



. The number of photoelectron ~ 1000
. Multiplication ~ 105 -> 108 electron

. Can we measure?



Electron Counting

How many electron do we need?

Ammeter can measure about 1 uA. How many electron?

1079

= 10_196/8' =6 x 102 e/s:

1A

We can see— 0O.1s

6 x 1011electron is needed to “See”

108 is not enough to “See”



108 electron pass in 10ns.
Current = Charge/ Time
1.6x10-1°x 108 / (10 x 10-°) = 1.6 mA

Cannot see in Ammeter but can be detected by electronics.

Electronics can measure voltage.
Current to Voltage
1.6mA x 50Q = 80mV
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M P P C (S I P M ) Multi-Pixel Photon Counter (MPPC), also known as silicon photomultiplier (SiPM)

https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/si-apd_kapd9007e.pdf
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9008e.pdf

[Figure 1-1] Schematic diagram of avalanche multiplication (near infrared type)
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[Figure 1-2] Image of MPPC’s photon counting
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https://goalp.com/ga-139




Figure 1-1 shows a structure of an MPPC. The basic
element (one pixel) of an MPPC is a combination of
the Geiger mode APD and quenching resistor, and a
large number of these pixels are electrically connected
and arranged in two dimensions.

[Figure 1-1] Structure
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overvoltage

[Figure 3-1] Gain vs. overvoltage (pixel pitch: 50 pm)
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Fig. 2: Photoelectron spectrum probing a LED source measured with a Hama-
matsu MPPC S10362-11-100C at a bias voltage of 70.3V" and temperature of
25°C.
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Fig. 1: Response of a SiPM Hamamatsu MPPC S10362-11-100C illuminated
by a light pulse.
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The number of pixel is finite.
The number of photon is large, the number of pixel is not proportional.

When some pixels are already occupied, a photon has chance to hit occupied pixel. The
probability of adding one more hit is the same as the probability of vacancy. Here, we discuss
about a MPPC which has M pixels.

1 Occupancy

When m pixels are vacant, the probability of hitting vacant pixel is v = m/M. When one
more photon hits, the number of vacancy decreases to m — . Since m = M, the vacancy
decreases to (M — 1)~.

n hit causes M — m,, occupied pixels, and ~,. Them,

Mpy1 = My —n (1)
Myas = (M =1) (2)
M—-1
Tn+1 = T’Vﬂ (3)
Since 79 = 1,

M—1 ! —an

W= () = (@)
Here
M -1 1

=1 ~ — D
a=—tog (M) ~ )

Then, the number of occupied pixels is

M—mn:M—Mfyn:(1—<M_1>n>M:(1—e‘°‘”)M (6)




SiPM in eazyPET has 400 pixel.
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