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* “Naturalness’” & Unification = learn more about the higgs sector, new BSM

“Traditional’ searches

tivations for BSM models and searches

iggses!

Higgs self-coupling?! Top partners! Light gluon partners (gluino, KK-excitation)! New

scalars?

Flavour anomalies = New Z with FCNC! Leptoquarks!

Dark Matter motivated = M

Neutrino mass = HNL new W' /', ...

Because we see nothing = Axion-

Ike particles,

stopped charged particles, heavy tracks, ...

[See talks by V. Hegde, + 27 WG2 talks + ?? Posters]

-F I-based bsll searches?

Dark Matter

Extra

Heavy
Fermions

Leptoquarks

Heavy Gauge Bosons

Overview

= [, mono-X, mediator searches, electroweakino, ...

of CMS EXO results
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

What does it take to test a theory at the LHC?

* Write down the general Lagrangian + find parameter space the gets you the

right phenomenology (e.g. DM density)

* |[dentify the corresponding LHC production + decay modes; make a “simplified
model’ based on this (this is so we can capture the general features)

* Pick particles + interactions & scan over Masses, couplings, (or lifetimes)

* |[dentify If any existing searches (LHC +
reinterpret all existing limits; do they

D

eave off some Iinteresting p

D etc.) are sensitive to th

s model:

nase space!

* Provide a proof-of-concept search strategy; useful If cut-and-count because

more transparent



Simplified models — a blessing and a curse
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Observable

processes: Pyth ia8

Lagrangian + production of new

Pythia 8.2 Manual (2015)
SUSY & SLHA (2012)

Dark Matter in Pythia8 (2018)
Pythia 8.3 Manual (2022)

parameters particles, interference
etc.

,"'/ Simulate detector RecaSting
effects Needs to be validated!
‘ Cut flow, benchmarks,
Change l detector acceptances CheckMATE2 |
params‘\ Anzlﬁii:t::cu;f & 2ggdeefgctlce)nacclziirer;[gl.ish Derdl(ilste:::c:tezl((:gg ;
[RRETENEEEE predictions this

Compare with published
shapes/limits



Pythia8 Coll. 2203.1 160

MC generators are complicated beasts

O O
o ©Oo ®
® o:. ® O
.. ° ® O PP ..
:. e .. “ O o .. o

NV

{ OHard Interaction
\ @ Resonance Decays
B MECs, Matching & Merging
M FSR
M [SR*
QED
® ™ Weak Showers

™ Hard Onium
(O Multiparton Interactions

[0 Beam Remnants*
Strings
Ministrings / Clusters

Colour Reconnections
String Interactions

Bose-Einstein & Fermi-Dirac
M Primary Hadrons

® Meson M Secondary Hadrons
A Baryon _ _ .
W Antibaryon M Hadronic Reinteractions

© Heavy Flavour (*:incoming lines are crossed)

BSM models


https://arxiv.org/abs/2203.11601

Dercks, ND et al. Comp. Phys. Comm. (2017)

Flowchart for Recasting analyses

. . Input Possibility A
Write the Lagrangian e e

- optionally: cross section or K-factor 3 MGS_aMC @ NLO

Input Possibility B - Generate events for any model implemented in MG5_aMC@NLO
\/
\/

GQ hera ILQ S l. 9 ha { Lven IL S - SUSY process and/or .in Pythia settings file

- SLHA file

- optionally: cross section or K-factor S Pythia
Input POSSibility C - Generate SUSY events or shower provided .lhe files

[nclude QCD effects

- optionally: cross section or K-factor

Delphes**

- Simulate track reconstruction and energy deposits

IIlpllt POSSibility D < - Perform energy/momentum smearings on reconstructed objects
- Cluster jets
’ “ C { “ d ‘Q A ‘Q f-QC fo r ‘Q%%‘QC fS - .hep or .hepmc events > - EvalflateJ: ttotal missing energy

- cross sections

Input Possibility E Analysishandler

- Apply identification efficiencies for photons and leptons
- Apply tagging efficiencies for b- and tau-jets
- - Checks isolation conditions that are required for the various analyses

- Delphes .root files
- cross sections

- Perform overlap removals, trigger efficiencies, kinematical cuts
- Follow experimental analyses as closely as possible
- Count how many events fall into various signal regions

. 5 . EXpe.rim.ental
Stimulate kinematic cuts Publications >

Analyses

N mm Em E E E E E N N N N N N N N N N N O N I I I I I I I O B B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN SN AN SN SN SN AN e G e e e e e W

O Cx nrn T 1 r #events of different signal regions
<, MRS :
2. N (summed over all input events)
&’ %
G . i i
. Q Ay 1 1 L
% 14| Evaluati
ompare 1o fublisne Output 4| Evaluation
PAEE RIS p— — : .
° . - For all signal regions... ] - Find signal region with largest expected exclusion potential
{ f ... theoretical signal / experimental upper limit N - compare expected signal to experimental observation y
M P P 'Qr l W‘l S ... CLs(signal, background, observed) \‘ ¢
- State if input is excluded or allowed . . P

* Delphes output is not sufficient to do LLPs; we do our own vertexing/efficiencies to validate

13



RiF recommendations 2003.07868, 2109.0498 |

What are issues in Reinterpretation?

See also ongoing workshop of the Re-interpretation Forum: https://indico.cern.ch/event/| 197680/

* Make sure that published results are actually usable; multiple topologies, no missing

efficiencies; check you can validate ¢ == g 0" —
_g 10-1 —— RECAST-Full CLs ._% 10—1_§ S;E 2;,;0\( simplified model
" » Ty
ND et al. (CheckMATE coll.) 2104.04542 s o B s
ENT ENY
%104; ;Lélo—ﬁl.;
T 109 102 100 10100 107 1078 1072 107 10° 100 102
7 [ns] 7 [ns]
* Publication of correlations, full likelihoods where possible
Formats are complicated, only just started e Coretatior
8 1 === Published (correlation)
CMS simplified likelihood for mono-jet; Plot from A.Verma T e e ot
. How to reuse ML/BDT based searches!? .-



Recap: A case for DM searches @ LHC through LLPs

e Direct and Indirect

DM searches rely of dark

matter that Is already existing and therefore
sensitive to uncertainties (e.g. local density)

* Proc

does

UCI

ng at colliders 1s com

NO!

' rely on astrophysica

Dle

eS

mentary anad

‘|mates

Indirect

Cosmological

e.g. Cosmic Microwave Background,

irect Detection



Recap: A case for DM searches @ LHC through LLPs

* L HC Production mode + lifetimes of particles directly predicted by how DM produced in
early universe

* Well-motivated cosmological regimes (freeze-in, co-scattering) can be tested by LLPs
because they predict small couplings.

Early Universe I

SM

sMm “




No WIMPs seen in Direct Detection or LHC so far

—
ATLAS + D
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ATLAS MET search with full Run 2:2102.10874
CMS Run 2 Jets + MET:2107.1302



Motivation for LLPs: Co-scattering Dark Matter

Co-scattering = small coupling + some compression: D’Agnolo et al. 1705.08450
I Garny et al. 1705.09292

Early Universe

. 4
D\ /SI\/I

.
A Y

18



Hall et al. 0911.1120

Motivation for LLPs: Freeze-in Dark Matter

Freeze-in; start with zero DM density, populate later via mediator decay/interactions

M . SM

Early Universe

- RS




Co-scattering and Freeze-in

Co-scattering Freeze-in
DM has feeble couplings with
oD X X o
D x x Needs mediator with SM
Mediator likely has very small
decay width and Is long-livec
Collider

Look for long-lived mediators

20



What does long lifetime signify?

= /l/

[, Small couplings
2. Heavy intermediate particle (e.g. mesons in SM, mediator doesn’t have to be super heavy)

3. Compressed spectrum (e.g. new SU(2) Iriplet fermion )

Ways to produce a particle at the LHC:

|. Needs to have colour/EVW-charge to be produced directly

2. Can be produced In decays of another particle If it does not have SM charges

21



LLP Signature vocabulary

Displaced Leptons ey, uu

Vertices  with muons, lepton veto (n_trk > 3), dimuon

Jets Displaced, emerging, with lepton, trackless, ...

"Prompt” Heavy charged track

Disappearing track

CMS LLP searches include all of these

22
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Theoretically motivated but fall through search cracks!

Bharucha, Brummer, ND 1804.02357
[— % pair production Blekman, ND, et al 2007.03708

—  CMS-SUS-16-048 |
- = my+ —my, (relic)

~ (220 GeY, 20 GeV) w
| _ -
100 m. = 220 GeV 8
--------------- :
————————— (@)
=
| -
(qv]
o S
100 120 140 160 180 200 220 240
my+ [GeV] 1 O %
dp)]
! 7 excluded at
()
_§ ' 1
E CR III SR II
S g |
=
= SR 1
el
CR1I
()
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u ldol [um] CMS-PAS-EXO-16-022 24


https://arxiv.org/abs/2007.03708

NN improves sensitivity many fold!

SR — (220,20,3)

pT(e’ 1) = 20 GeV o (324’20’2) # (m. [GeV], Am [GeV], 1. [em]) Sy St St

L=140fb", Vs =13 TeV (220,20,0.1) ‘
o (220,20,1) 1 (324, 20, 2) 0.21 0.23 | 0.64
Preliminary — (220,20,10) 2 (220, 20, 3) C o057 | o067 | 271
— (220,20,100) 3 (220,20, 0.1) 68 19 | 3.06
— (220,40,1) 4 (220, 20, 1) 34 72 139
5 (220, 20, 10) 15 20 147
6 (220, 20, 100) 0.79 0.70 14
7 (220, 40, 1) 449 | 427 | 837
HF background 2323 363 14

Blekman, ND, et al 2007.03708

O 010203 04 05 06 0.7 0.8 09 1
NN


https://arxiv.org/abs/2007.03708

Extrapolation of near-future reach

Blekman, ND, et al 2007.03708

m, = 220 GeV NN = 0.9
100 Am =20 GeV
10
3
[ excluded at
95% CL
B N N .

0.1 1 10 100
CT. [cm]
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https://arxiv.org/abs/2007.03708

What triggers?

The LLPWG has identified multiple
avenues where more work is necessary

2110.14675, CERN-LPCC-2021-0l

During Run 2, CMS had several triggers designed to target events with two displaced leptons [23—
25]. These triggers selected ee, eu and pp events with a pr threshold on each lepton of 30-50 GeV,
and no primary vertex requirement. A trigger requiring a photon and a displaced muon was used
to select events with a displaced muon and displaced electron, or the equivalent with two displaced
electrons (i.e., trigger on two photons). The thresholds for these triggers were substantially increased
when the performance of the LHC increased during Run 2. To achieve low-pt thresholds during Run
3 further work will be necessary.

. Present . Present
L1 : inrilszz ) HLT : inr::lelllll 5 Physics motivation example | Section
| | Hadronically decaying LLPs
I |
Jet or MET ' Yes *' meber ,:).f tracker ' No with low-HT wh.ere 'displa'ced 312
| hits “below” jet | track reconstruction is particu-
: : larly difficult
' ' Slow LLPs (heavy or pro-
* HCAL timi 'N Vari " Yo
B : 0 Arious : e duced near threshold) 3.2.1
* HCAL timi + !
, — ' No Various " Yes LLPs decaying in calorimeter
CalRatio type ! !
| * Calo timing (+
I I
tracking?) + dramatic
17,37, Hr, 21 i Yes e ductiin) of HLT i No Various LLP scenarios 399
: thresholds :
' Displaced v + * tim- |
Photon - Yes , Splacet Y m ' No GMSB
| ing |
I I
Single muon ' Yes *Displaced track(s) in ! Soft displaced leptons; GMSB
= inner detector (*add ' No staus, freeze-in DM, LLPs 3.3.1
. I I
Single electron - Yes calo timing for | from Higgs boson decays
I I
t?
, , : electrons?) : Soft displaced multi-lepton,
Di- (or tri-) muon . Yes |
| | e.g. dark photons, dark shower
! * M tem tim- |
Muon system - Yes ing HOTL Systet B - No Fractionally charged particles | 3.4.1
+ Displaced muons : No Muon system and in- ! Yes Displaced muons with impact | 3.5.1,
| ner tracker | parameter > 10s of cm 3.5.2

Table 1. Summary of ideas for new Run-3 triggers for ATLAS. We assume that Run-2 triggers [29, 57] will be
retained or improved for Run 3. The new component of each trigger is marked with a star *. Question marks
indicate possibilities that need further investigation. Please refer to text for further details.
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Hidden Valley: Strassler & Zurek hep-ph/060426 |

Hidden Valley & Dark Showers mrging s 5020540

Semi-visible jets: 1503.00009

16.1 fo™' (13 TeV)
= Observed limit
= Expected limit
==== Expected limit+1c

SM (pp)

Heavy Mediator

Hidden sector "quarks”

Dark shower
+ Hadronisation

CMS 1810.10069

N
o
w

)

95% CL upper limit on cross section [fb]

Trick of using strongly

10 charged production

Hidden sector hadrons

Potentially strong
Lnteractions between SM §
PM

1 L1 | L1 1 L1 1 L1 1
400 600 800 1000 1200 1400 1600 1800 2000
m, [GeV]

Off-shell
Heavy Mediator
SM

[See also talk by S. Kulkarni] 28



e Current
results In

e But clea
distinguis

e Can we

use of full Pythia8 machinery
too many parameters (at a

minimum, a scan in 8 dim; partly “tuning)

"ly, nany choices result iIn non-

nable™ phenomenology

ﬁ

erence

encapsulate the di

meaningfully? —

* Mass of resonance to set production
kKinematics

* Simplified model-like one kind of
dark hadron decay at a time

* Encapsulate the jet shape using our

understanding of extremes
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What would be the best way to describe these?

Jets from a | TeV resonance with different coupling & running
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* New focus on improving coverage in LLPs and finding gaps in coverage

Not in this talk

* ML ideas to find anomalies — autoencoders, energy mover distance, etc.

* Jet substructure techniques + QCD resummation improvements for heavy new
particle searches
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