Physics at RHIC and FAIR QCD matter at large μ_R

Stony Brook University

POSTUM

XXV DAE-BRNS HEP Symposium

IISER Mohali

DEC 12TH - DEC 16TH

Roli Esha

QCD phase diagram

diagram by varying the beam energy.

Roli Esha

Phase structure of QCD

- Phase transition does not occur along the freeze-out line
- Reaction dynamics need to be controlled using probes with memory

Organization

- Bulk signatures of QGP Suppression, elliptic flow
- Critical phenomenon fluctuation observables
- Transport properties heavy flavor
- Sensitivity to large EM fields spin polarizations
- Light- and hyper-nuclei production

• Thermal radiations and chiral symmetry restoration — Direct photons, dileptons

RHIC and FAIR

 $\sqrt{s_{NN}}$: 3.0 – 200 GeV

Roli Esha

 $\sqrt{s_{NN}}$: 2.9 – 4.9 GeV

Evidence for deconfinement

- Suppression due to opaqueness of the deconfined medium
- Enhancement due to dominance of hadronic interactions

Roli Esha

- $v_2 > 0$ formation of QGP
- $v_2 < 0$ disappearance of partonic collectivity

Thermal radiations

- 80-90% photons are decay photons

Roli Esha

Thermal radiations

Roli Esha

Similar spectra around 2 GeV/c — common source of photon production independent of $\sqrt{s_{NN}}$

Thermal radiations

 $\alpha > 1$ and independent of p_T

Chiral symmetry restoration

Zaochen Ye, QM2022

- Dilepton excess is consistent with inmedium ρ -broadening
- Extracted temperature $\sim T_{ch}$ implies emissions from hadronic phase

Intermediate Mass Region

- Dilepton excess implies sensitivity to radiations from QGP
- Extracted temperature ~ 300 MeV is surprisingly large

Probing 1st-order transition

- Softening of the EoS due to a firstorder phase transition can result in an increase of the low-mass dilepton yield relative to a cross-over scenario
- The slope parameter of the dielectron excess mass spectra, as a measure of the medium temperature, may exhibit a distinct sharp change due to a firstorder phase transition

Search for Critical Phenomenon

Roli Esha

Search for Critical Point

Roli Esha

 Non-monotonic collision energy dependence observed for netproton C_4/C_2 is consistent with CP expectation.

- Non-CP models fail to reproduce the observed trend.
- Measurement at 3 GeV is consistent with UrQMD, implying that the QCD matter created is dominantly hadronic

Search for Crossover

- C_6/C_2 for 0-40% centrality is increasingly negative with decreasing energy, except at 3 GeV where it is positive.
- The negative sign of C_6/C_2 is consistent with QCD calculations ($\mu_R \leq 110$ MeV) that include a crossover quark-hadron transition.
- Peripheral 50-60% data, and calculations from the UrQMD model which does not include any QCD transition, are either positive or consistent with zero.

Search for 1st order phase transition

- cumulants with alternating sign.
- component shape of proton distributions. Possibility of sign change at low energy.

Roli Esha

• Prediction : Multiplicity distribution two-component near a 1st order transition. Large factorial

• Observation : For $\sqrt{s_{NN}} \ge 11.5$ GeV, the proton κ_n within uncertainties does not support the two-

DAE-HEP 2022

Transport properties

- Spatial diffusion coefficient is expected to be larger in the hadronic phase than in the late QGP phases prior to hadronization — spectra and flow of D-meson
- Measurements of the relative abundances of different charm-hadron species are used to characterize the hadronization mechanisms of charm quarks and the role of quark recombination — Λ_c/D^0

Global spin polarization

arXiv:2209.05009

- Probe for initial angular momentum and magnetic field
- Polarize quarks and influence different spin polarization for quarks and antiquarks with different magnetic moments
- Consistent with model calculations based on rotational polarization of microscopic particle spin in a vortical fluid, suggesting the presence of a strong vorticity field

Light- and hyper-nuclei production

- which constitute an exquisite test of QCD

• Provides access to the hyperon–nucleon interaction and strangeness in high density nuclear matter

Yields of light nuclei and hypernuclei are potentially sensitive to multiple-baryon correlations,

DAE-HEP 2022

Future facilities

• Very successful RHIC program comes to an end in 2025

• High μ_R program with FAIR is a natural continuation

DAE-HEP 2022

Thank you for your attention!