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Part I:

Why the intial state is important
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 “Standard model of Heavy Ion Collisions”
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 “Standard model of Heavy Ion Collisions”
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All late time observables depend on the initial state. There is no 
accurate measurement of the initial state at high energies (small x)
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The total energy density on the lattice at τ = 0 is given
by

ε(τ = 0) =
2

g2a4
(Nc − Re trU!) +

1

g2a4
trE2

η , (5)

where the first term is the longitudinal magnetic energy,
with the plaquette given by U j

!
= Ux

j Uy
j+x̂ U

x†
j+ŷ U

y†
j .

The explicit lattice expression for the longitudinal elec-
tric field in the second term can be found in Refs. [42, 43].
In Fig. (1) we show the event-by-event fluctuation in
the energy per unit rapidity at time τ = 0.4 fm. The
mean was adjusted to reproduce particle multiplicities
after hydrodynamic evolution. This and all following re-
sults are for Au+Au collisions at RHIC energies (

√
s =

200AGeV) at midrapidity. The best fit is given by a neg-
ative binomial (NBD) distribution, as predicted in the
Glasma flux tube framework [44]; our result adds further
confirmation to a previous non-perturbative study [23].
The fact that the Glasma NBD distribution fits p+p
multiplicity distributions over RHIC and LHC ener-
gies [33, 34] lends confidence that our picture includes
fluctuations properly.
We now show the energy density distribution in the

transverse plane in Fig. (2). We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [4, 11]. In the latter, for
every participant nucleon, a Gaussian distributed energy
density is added. Its parameters are the same for ev-
ery nucleon in every event, with the width chosen to be
0.4 fm to best describe anisotropic flow data. We will
also present results for a model where the same Gaus-
sians are assigned to each binary collision. The resulting
initial energy densities differ significantly. In particu-
lar, fluctuations in the present computation occur on the
length-scale Q−1

s (x⊥), leading to finer structures in the
initial energy density relative to the other models. As
noted in [35], this feature of CGC physics is missing in
the MC-KLN model.
We next determine the participant ellipticity ε2 and

triangularity ε3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective εn
[45], which makes these eccentricities a good indicator of
what to expect for vn. We define

εn =

√

〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉
, (6)

where 〈·〉 is the energy density weighted average. The re-
sults from averages over ∼ 600 events for each point plot-
ted are shown in Fig. 3. The ellipticity is largest in the
MC-KLN model and smallest in the MC-Glauber model
with participant scaling of the energy density (Npart).
The result of the present calculation lies in between,
agreeing surprisingly well with the MC-Glauber model
using binary collision scaling (Nbinary). This confirms
previous results in the CYM framework using average
initial conditions [46].

FIG. 2. (Color online) Initial energy density (arbitrary units)
in the transverse plane in three different heavy-ion collision
events: from top to bottom, IP-Glasma, MC-KLN and MC-
Glauber [11] models.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact pa-
rameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There
is no parameter dependence of eccentricities and trian-
gularities in the IP-Glasma results shown in Fig. 3. It
is reassuring that both are close to those from the MC-
Glauber model because the latter is tuned to reproduce
data even though it does not have dynamical QCD fluc-
tuations.

We have checked that our results for ε2, ε3 are insensi-
tive to the choice of the lattice spacing a, despite a log-
arithmic ultraviolet divergence of the energy density at
τ = 0 [47]. They are furthermore insensitive to the choice
of g, the ratio g2µ/Qs, and the uncertainty in Bjorken x
at a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal
pions after evolution using music [4, 48] with boost-
invariant initial conditions and shear viscosity to entropy
density ratio η/s = 0.08. Average maximal energy densi-
ties of all models were normalized to assure similar final
multiplicities. More pronounced hot spots lead to harder
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AA vs. pA

Gale et al, 1209.6330

IP-Glasma+Hydro

AA

Schenke, Venugopalan, 1405.3605

Large elliptic flow seen in p-Pb collisions

Hydro calculation fail to describe this.



Part II:

Accessing the transverse initial state
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Exclusive diffraction in the Dipole Model

z

1-z

!r

p / A p / A

γ
∗ J/Ψ, φ, γ

𝒜γ*p→Vp
T,L (xIP, Q2, Δ) = i∫ 2πrdr∫

dz
4π ∫ d2 ⃗b (Ψ*VΨ)(r, z)J0([1 − z]rΔ)e− ⃗b ⋅ ⃗Δ

dσqq̄
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1
16π
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qq̄
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H. Kowalski, L. Motyka, G. Watt, Phys.Rev.D 74 (2006) 074016, arXiv: hep-ph/0606272



Exclusive diffraction in the Dipole Model

z

1-z

!r

p / A p / A

γ
∗ J/Ψ, φ, γ

t = − Δ2
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H. Kowalski, L. Motyka, G. Watt, Phys.Rev.D 74 (2006) 074016, arXiv: hep-ph/0606272

Tp(b) =
1

2πBG
e− b2

2BG BG = 4 GeV−2
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Incoherent Scattering

d⇥coherent

dt
=

1

16�
|�A⇥|2d⇥total

dt
=

1

16�

D
|A|2

E

complete set{

Nucleus dissociates (       ):f 6= i
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X
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X

f
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The incoherent CS is the variance of the amplitude!!



The nucleus as a collection of nucleons
Independent scattering approximations:

1 −
1
2

dσ(p)
qq̄

d2 ⃗b
(xIP, r, ⃗b ) =

A

∏
i=1 (1 −

1
2

dσ(A)
qq̄

d2 ⃗b
(xIP, r, | ⃗b − ⃗b i | ))

1
2

dσqq̄

d2 ⃗b
(xIP, r, ⃗b ) = 1 − exp ( π2

2NC
r2αS(μ2)xg(x, μ2)

A

∑
i=1

Tp( | ⃗b − ⃗b i | ))

TA( ⃗b ) =
A

∑
i=1

Tp( | ⃗b − ⃗b i | )

Tp(b) =
1

2πBG
e− b2

2BG

TA( ⃗b ) = ∫ dz
ρ0

1 + exp
⃗b 2 + z2 − R0

d
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TT, Thomas Ullrich  
Phys.Rev.C 87 (2013) 2, 024913, arXiv: 1211.3048


Comput.Phys.Commun. 185 (2014) 1835-1853 arXiv:1307.8059 




Into the heavy nucleus

x (fm)

y 
(f

m
)

| t | = 0

12

| t |
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Into the heavy nucleus
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| t | ≲ 0.2 GeV2
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Into the heavy nucleus
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0.2 ≲ | t | ≲ 2 GeV2
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Hotspot model for incoherent ep-scattering

Tp(b) =
1

2πBG
e− b2

2BG

xg(x, μ2
0) = Agx−λg(1 − x)6

μ2 = μ2
0 +

C
r2

Tp(b) =
1

2πNqBq

Nq

∑
i=1

e− ( ⃗b − ⃗b i)
2

2Bq

H. Mäntysaari and B. Schenke  Phys. Rev. Lett., 117(5):052301, 2016. 

Also: large scale (small |t| ) saturation scale fluctuations. Affects small , one more parameter.| t |

Nq = 3

 with a Gaussian distribution of width ⃗b i Bqc
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Eventhough coherent events dominate, the large  tails have a significant effect on the cross sections!

Subnucleon structure becomes important for 

| t |
| t | > 0.2 GeV2

A-A UPC at the LHC & RHIC
TT: SciPost Phys.Proc. 8 (2022) 148
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Hotspot Model shortcomings

JHEP 05 (2010) 085Phys. Lett. B 568 (2003) 205–218

Non-perturbative phenomenology. Only valid for . 

What about larger ?

| t | ≲ 1 GeV2

| t |



Part III:

Two pictures of the transverse gluon


1: Color Charge Sources, 
The Color Glass Condensate

18



The Color Glass Condensate Picture
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Hadronic target moving with large  probed 
at scale  where 


Partons inside target have momenta 


Localisation of partons: 


Spatial resolution of probe: 

P+

x0P+ x0 ≪ 1
k+ = xP+

Δz− ∼
1
k+

=
1

xP+
1

x0P+

Time evolution of partons: 




Time resolution of probe: 

τ = 2z+z− ≈ Δz+ ∼
1
k−

=
2k+

k2
T

=
2xP+

k2
T

τ ≈
2x0P+

k2
T

<
2x0P+

k2
T

For , partons appear fully localised in  and static in .

Treat these partons as sources of small-x fields.

x > x0 z− z+

Probe moving in  direction

Target moving in  direction

z−

z+z+z−



The Color Glass Condensate Picture

Large  partons act as sources for small  gluons.       

Need to model the weight functional, e.g. McLerran-Venugopalan Model:





Central limit theorem: Assume Gaussian correlations of sources, large nucleus, 
independenly fluctuating.


This is the basis for IP-Glasma (as seen earlier)


However: this picture combines very well with the hotspot model!

x x

Wx0
[ρ] = 𝒩 exp (−

1
2 ∫ dx−d2xT

ρ2
a(x−, xT)
λx0

(x−) )
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Locate the source colour charges around the locations  of the hotspots and let them 
fluctuate event-by-event:


,         


Hotspot profile:  


Small  hotspot model acts as a starting distribution for the CGC nucleon.

bi

⟨ρa( ⃗x )⟩CGC
= 0 ⟨ρa( ⃗x )ρb( ⃗y )⟩CGC

=
Nq

∑
i=1

μ2(
⃗x + ⃗y
2

− bi)δ(2)( ⃗x − ⃗y )δab

μ2( ⃗x ) =
μ2

0

2πr2
H

e
− ⃗x 2

2r2
H

| t |

Tp(b) =
1

2πNqBq

Nq

∑
i=1

e− ( ⃗b − ⃗b i)
2

2Bq

The Color Glass Condensate Picture

H. Mäntysaari, B. Schenke, Phys. Rev. Lett. 117 (2016) 052301
H. Mäntysaari, B. Schenke, Phys.Rev. D94 (2016) 034042



The Color Glass Condensate Picture
H. Mäntysaari, F. Salazar, B. Schenke, 2207.03712H. Mäntysaari, B. Schenke, C. Shen, W. Zhao, arXiv:2202.01998



The Color Glass Condensate Picture
S. Demirci, T. Lappi, S. Schlichting 2206.05207 

Analytical calculation in the dilute and non-relativistic 
limit. Incoherent normalised by 2.5.


They found that at small  major contribution comes 
from fluctuations in the dipole.

| t |

J-P. Blaizot, M.C. Traini 2209.15545



The Color Glass Condensate Picture

B. Schenke, Rep. Prog. Phys. 84 082301 (2021)



Part IV:

Two pictures of the transverse gluon


2: Hotspot Evolution
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Larger |t| ?
Appears to be two slopes in the data:


One for 

Another for 

0.5 ≤ | t | ≤ 2 GeV2

| t | > 2 GeV2

Hotspots within hotspots!

26
Arjun Kumar, TT,  Eur.Phys.J.C 82 (2022) 9, 837, arXiv: 2106.12855



Hotspots within Hotspots

Tp(b) =
1
Nq

Nq

∑
i=1

Tq( ⃗b − ⃗b i)

Ths(b) =
1

2πBhs
e− b2

2Bhs
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Arjun Kumar, TT,  Eur.Phys.J.C 82 (2022) 9, 837, arXiv: 2106.12855



Even larger |t| Hotspots withing hotspots within hotspots
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Arjun Kumar, TT,  Eur.Phys.J.C 82 (2022) 9, 837, arXiv: 2106.12855



Even larger |t| Hotspots withing hotspots within hotspots
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Into the heavy nucleus
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Into the heavy nucleus
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| t | ≲ 0.2 GeV2
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Into the heavy nucleus
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0.2 ≲ | t | ≲ 2 GeV2
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Into the heavy nucleus
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Into the heavy nucleus
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Insights
The transverse gluon structure:


1. Appears to become dilute at large 


2. Become fractal (scaling behaviour)


This suggests that we can describe the hotspot t-spectrum with a linear,  
scale-independent (in ) evolution


Gluon number fixed by longitudinal structure   
(no gluon splittings as in DGLAP). 


Picture: Transverse part of gluon wavefunction probed with areal resolution 




Increased resolution appears as hotspots splitting.

| t |

log | t |

xg(x)

δb2 ∼
1

| t |
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The simplest Model-1
We consider a “DGLAP parton shower-like” approach based on resolution, where a hotspot may 

split into two as the resolution increases.

dPsplit

dt
=

α
| t |

Probability of a hotspot created at  splitting at t0 t > t0

Tp( ⃗b ) =
1
Nq

Nq

∑
i=1

Tq( | ⃗b − ⃗b i | )

Tq( ⃗b ) =
1

2πBq
e− b2

2Bq

Initial State at :t = t0

36

Inital State Parameters: 

 




Bqc = 3.1 GeV−2

Bq = 1.25 GeV−2

Nq = 3

dP
dt

=
α

| t | ( t0
t )

α

dPnosplit

dt
= exp (−∫

t

t0

dt′￼

dPsplit

dt′￼ ) = ( t0
t )

α



The simplest Model-1
We consider a “DGLAP parton shower-like” approach based on resolution, where a hotspot may 

split into two as the resolution increases.

dP
dt

=
α

| t | ( t0
t )

α

Two offspring hotspots  created at distance ,  

with widths 


Conditions for resolution:


Probe resolution:     Geometry: 


Generate offspring  from parent . 

Reject if not resolved.


This becomes an effective hotspot repulsion.

i, j dij = | ⃗b i − ⃗b j |

Bi, j =
1

| t |

dij >
2

| ⃗Δ |
dij > 2 Bi, j

⃗b i, j Tparent( ⃗b i, j)

Probability of a hotspot created at  splitting at t0 t > t0

Tp( ⃗b ) =
1
Nq

Nq

∑
i=1

Tq( | ⃗b − ⃗b i | )

Tq( ⃗b ) =
1

2πBq
e− b2

2Bq

Initial State at :t = t0

37

Inital State Parameters: 

 




Bqc = 3.1 GeV−2

Bq = 1.25 GeV−2

Nq = 3
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Hotspot Evolution Model-1
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Different sources of fluctuations:

Position
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Width

Normalisation
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Some hotspots live too long, leading to too much fluctuations for large | t |
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The more realistic Model-2
We consider a “DGLAP parton shower-like” approach based on resolution, where a hotspot may 

split into two as the resolution increases.

dPsplit

dt
=

α
| t |

t−t0
t

Probability of a hotspot created at  splitting at t0 t > t0

Tp( ⃗b ) =
1
Nq

Nq

∑
i=1

Tq( | ⃗b − ⃗b i | )

Tq( ⃗b ) =
1

2πBq
e− b2

2Bq

Initial State at :t = t0
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Inital State Parameters: 

 




Bqc = 3.1 GeV−2

Bq = 1.25 GeV−2

Nq = 3

dP
dt

=
α

| t |
t−t0

t
exp [−α ( t0

t
− ln

t0
t

− 1)]
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Hotspot Evolution Model-2
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Hotspot Evolution Models
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Part V:

Energy Dependence

43



Inital distribution energy dependence

Tp(b) =
1

2πNqBq

Nq

∑
i=1

e− ( ⃗b − ⃗b i)
2

2Bq

Nq → Nq(xIP) = p0 xp1
IP(1+p2 xIP)

J. Cepila, J. G. Contreras, J. D. Tapia Takaki,  
Energy dependence of dissociative J/ψ 
photoproduction as a signature of gluon saturation at 
the LHC,  
Phys. Lett. B 766 (2017) 186–191. 

p0 = 0.011, p1 = − 0.56, p2 = 165

rrms = 2(Bqc + Bq(xIP))

Bq(xIP) = b0 ln2 x0

xIP

44

Arjun Kumar, TT, Phys.Rev.D 105 (2022) 11, 114011  arXiv: 2202.06631
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Our models indicate that the incoherent 
cross section will saturate at small , while 

the coherent cross section will grow.
x

For similar predictions in the IP-Glasma framework, see:  
H. Mäntysaari, B. Schenke, Phys.Rev.D 98 (2018) 3, 034013; B. Schenke, Rept. Prog. Phys. 84 (2021) 8, 082301



Conclusions and Outlook
The HERA data provides much information on the  

small-x gluon initial state in nucleons. 


To get a full handle of the intial state, we would need measured -spectra at a range 
of  and 


We would also want direct measurements of the Nuclear initial state


Two main avenues for this:

1. UPC at LHC and RHIC (only ) 

This programme has gained a lot of attention lately 
from all experiments which complement  

each other beutifully


    2. The Electron-Ion collider starts taking data 
             in 2030. High-luminosity  

(see plenary talk by A. Deshpande)

           All , smaller energy


              LHC and EIC will complement each other

t
W Q2

Q2 = 0

(1033 − 1034)/cm2s

Q2
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Supplement with JIMWLK evolution 


,         





Small  hotspot model acts as a starting distribution for the CGC nucleon.

⟨ρa( ⃗x )⟩CGC
= 0 ⟨ρa( ⃗x )ρb( ⃗y )⟩CGC

=
Nq

∑
i=1

μ2(
⃗x + ⃗y
2

− bi)δ(2)( ⃗x − ⃗y )δab

μ2( ⃗x ) =
μ2

0

2πr2
H

e
− ⃗x 2

2r2
H

| t |

H. Mäntysaari, B. Schenke, Phys. Rev. Lett. 117 (2016) 052301
H. Mäntysaari, B. Schenke, Phys.Rev. D94 (2016) 034042

The Color Glass Condensate Picture
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⌘ S= transverse area,  
h = hydro limit of v2/ε and B ∝ η/s 
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3

The total energy density on the lattice at τ = 0 is given
by

ε(τ = 0) =
2

g2a4
(Nc − Re trU!) +

1

g2a4
trE2

η , (5)

where the first term is the longitudinal magnetic energy,
with the plaquette given by U j

!
= Ux

j Uy
j+x̂ U

x†
j+ŷ U

y†
j .

The explicit lattice expression for the longitudinal elec-
tric field in the second term can be found in Refs. [42, 43].
In Fig. (1) we show the event-by-event fluctuation in
the energy per unit rapidity at time τ = 0.4 fm. The
mean was adjusted to reproduce particle multiplicities
after hydrodynamic evolution. This and all following re-
sults are for Au+Au collisions at RHIC energies (

√
s =

200AGeV) at midrapidity. The best fit is given by a neg-
ative binomial (NBD) distribution, as predicted in the
Glasma flux tube framework [44]; our result adds further
confirmation to a previous non-perturbative study [23].
The fact that the Glasma NBD distribution fits p+p
multiplicity distributions over RHIC and LHC ener-
gies [33, 34] lends confidence that our picture includes
fluctuations properly.
We now show the energy density distribution in the

transverse plane in Fig. (2). We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [4, 11]. In the latter, for
every participant nucleon, a Gaussian distributed energy
density is added. Its parameters are the same for ev-
ery nucleon in every event, with the width chosen to be
0.4 fm to best describe anisotropic flow data. We will
also present results for a model where the same Gaus-
sians are assigned to each binary collision. The resulting
initial energy densities differ significantly. In particu-
lar, fluctuations in the present computation occur on the
length-scale Q−1

s (x⊥), leading to finer structures in the
initial energy density relative to the other models. As
noted in [35], this feature of CGC physics is missing in
the MC-KLN model.
We next determine the participant ellipticity ε2 and

triangularity ε3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective εn
[45], which makes these eccentricities a good indicator of
what to expect for vn. We define

εn =

√

〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉
, (6)

where 〈·〉 is the energy density weighted average. The re-
sults from averages over ∼ 600 events for each point plot-
ted are shown in Fig. 3. The ellipticity is largest in the
MC-KLN model and smallest in the MC-Glauber model
with participant scaling of the energy density (Npart).
The result of the present calculation lies in between,
agreeing surprisingly well with the MC-Glauber model
using binary collision scaling (Nbinary). This confirms
previous results in the CYM framework using average
initial conditions [46].

FIG. 2. (Color online) Initial energy density (arbitrary units)
in the transverse plane in three different heavy-ion collision
events: from top to bottom, IP-Glasma, MC-KLN and MC-
Glauber [11] models.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact pa-
rameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There
is no parameter dependence of eccentricities and trian-
gularities in the IP-Glasma results shown in Fig. 3. It
is reassuring that both are close to those from the MC-
Glauber model because the latter is tuned to reproduce
data even though it does not have dynamical QCD fluc-
tuations.

We have checked that our results for ε2, ε3 are insensi-
tive to the choice of the lattice spacing a, despite a log-
arithmic ultraviolet divergence of the energy density at
τ = 0 [47]. They are furthermore insensitive to the choice
of g, the ratio g2µ/Qs, and the uncertainty in Bjorken x
at a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal
pions after evolution using music [4, 48] with boost-
invariant initial conditions and shear viscosity to entropy
density ratio η/s = 0.08. Average maximal energy densi-
ties of all models were normalized to assure similar final
multiplicities. More pronounced hot spots lead to harder
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3

The total energy density on the lattice at τ = 0 is given
by

ε(τ = 0) =
2

g2a4
(Nc − Re trU!) +

1

g2a4
trE2

η , (5)

where the first term is the longitudinal magnetic energy,
with the plaquette given by U j

!
= Ux

j Uy
j+x̂ U

x†
j+ŷ U

y†
j .

The explicit lattice expression for the longitudinal elec-
tric field in the second term can be found in Refs. [42, 43].
In Fig. (1) we show the event-by-event fluctuation in
the energy per unit rapidity at time τ = 0.4 fm. The
mean was adjusted to reproduce particle multiplicities
after hydrodynamic evolution. This and all following re-
sults are for Au+Au collisions at RHIC energies (

√
s =

200AGeV) at midrapidity. The best fit is given by a neg-
ative binomial (NBD) distribution, as predicted in the
Glasma flux tube framework [44]; our result adds further
confirmation to a previous non-perturbative study [23].
The fact that the Glasma NBD distribution fits p+p
multiplicity distributions over RHIC and LHC ener-
gies [33, 34] lends confidence that our picture includes
fluctuations properly.
We now show the energy density distribution in the

transverse plane in Fig. (2). We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [4, 11]. In the latter, for
every participant nucleon, a Gaussian distributed energy
density is added. Its parameters are the same for ev-
ery nucleon in every event, with the width chosen to be
0.4 fm to best describe anisotropic flow data. We will
also present results for a model where the same Gaus-
sians are assigned to each binary collision. The resulting
initial energy densities differ significantly. In particu-
lar, fluctuations in the present computation occur on the
length-scale Q−1

s (x⊥), leading to finer structures in the
initial energy density relative to the other models. As
noted in [35], this feature of CGC physics is missing in
the MC-KLN model.
We next determine the participant ellipticity ε2 and

triangularity ε3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective εn
[45], which makes these eccentricities a good indicator of
what to expect for vn. We define

εn =

√

〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉
, (6)

where 〈·〉 is the energy density weighted average. The re-
sults from averages over ∼ 600 events for each point plot-
ted are shown in Fig. 3. The ellipticity is largest in the
MC-KLN model and smallest in the MC-Glauber model
with participant scaling of the energy density (Npart).
The result of the present calculation lies in between,
agreeing surprisingly well with the MC-Glauber model
using binary collision scaling (Nbinary). This confirms
previous results in the CYM framework using average
initial conditions [46].

FIG. 2. (Color online) Initial energy density (arbitrary units)
in the transverse plane in three different heavy-ion collision
events: from top to bottom, IP-Glasma, MC-KLN and MC-
Glauber [11] models.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact pa-
rameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There
is no parameter dependence of eccentricities and trian-
gularities in the IP-Glasma results shown in Fig. 3. It
is reassuring that both are close to those from the MC-
Glauber model because the latter is tuned to reproduce
data even though it does not have dynamical QCD fluc-
tuations.

We have checked that our results for ε2, ε3 are insensi-
tive to the choice of the lattice spacing a, despite a log-
arithmic ultraviolet divergence of the energy density at
τ = 0 [47]. They are furthermore insensitive to the choice
of g, the ratio g2µ/Qs, and the uncertainty in Bjorken x
at a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal
pions after evolution using music [4, 48] with boost-
invariant initial conditions and shear viscosity to entropy
density ratio η/s = 0.08. Average maximal energy densi-
ties of all models were normalized to assure similar final
multiplicities. More pronounced hot spots lead to harder
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Part II:

Our understanding of the longitundial initial state
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T. Toll MC@NLO 4

The longitudinal inital state
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x ∼ 1/3
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x ∼ 1/6

The longitudinal inital state
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Our Understanding of Gluons

x ∼ 1/9
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x ∼ 1/12

The longitudinal inital state
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The longitudinal inital state
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DokshitzerGribovLipatovAltarelliParisi DGLAP
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The longitudinal inital state
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The longitudinal inital state
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