Resonance production and hadronic phase in heavy-ion collisions with ALICE at the LHC

Sandeep Dudi (For ALICE collaboration) Panjab University, Chandigarh

Outline

- Motivation
- Alice Detector
- Results :
 - - p_{T} spectra
 - - Integrated yield (d*N*/dy) and mean transverse momentum $< p_T >$
 - - Particle ratios
 - - Rapidity asymmetry
 - - Nuclear modification factor
- Summary and Outlook

Why Resonances ?

Lifetime (fm/c): $\rho^0(1.3) < K^{\pm}(3.6) < K^{\pm}(4.16) < \Sigma^{\pm}(5.0-5.5) < \Lambda^{\pm}(12.6) < \Xi^{\pm}(21.7) < \phi$ (46.2)

 Mass (MeV/c²)
 Lifetime (fm/c)
 Hadron class
 Strangenest

Hadronic phase : Duration between chemical and kinetic freeze-out

 Information on the lifetime of hadronic phase
 Modification of yield (re-scattering and regeneration effects)
 Hadrochemistry of particle production
 Study of in-medium energy loss

ALICE : A Large Ion Collider Experiment

TimeProjectionChamber (TPC): (|η| < 0.9)</p> ♦ Tracking

✤ PID

Time-Of-Flight (TOF): (|η| < 0.9) ♦ PID

Forward detector (V0): V0A (2.8< η < 5.1) & V0C (-3.7< η < -1.7) Multiplicity/centrality event classes definition
✤ In p—Pb (V0A) and in pp, Pb—Pb (V0M = V0A + V0C)

Resonance Reconstruction

Transverse Momentum Spectra

♦ p_T spectra obtained in different multiplicity classes
 ♦ Hardening of the spectra with increasing multiplicity-> Caused by radial flow.

Rapidity dependence of p_T spectra

Rapidity yield asymmetry is observed at low p_T , asymmetry increases from low to high multiplicity classes.

• No significant rapidity dependence at high p_T for all multiplicity classes

♦ No model describes the data in the full measured p_T range.

DAE-HEP 2022, 12-16 December, Mohali

Sandeep Dudi

Comparison with blast wave model

- Re-scattering and regeneration processes modify the yield of reconstructible resonances
- Effect more pronounced for central collisions where the duration of the hadronic phase is longer
- The effect is larger at low p_T

Integrated Yield

Particle production depends on the multiplicity and does not depend on the collision system or the centre-of-mass energy \rightarrow Suggest a common particle production mechanism for all systems and energy.

Mean Transverse Momentum

Resonances to long lived particle ratios

Lifetime (fm/c): $\rho^0(1.3) < K^{\pm}(3.6) < K^{*0}(4.16) < \Sigma^{*\pm}(5.0-5.5) < \Lambda^{*}(12.6) < \Xi^{*0}(21.7) < \phi$ (46.2)

Pb-**Pb** Collisions :

- - Suppression of the yield of K*0/K in central Pb—Pb collisions in comparison to peripheral Pb—Pb collisions, pp collisions, and statistical thermal model predictions

-> Suggests that re-scattering is dominant over regeneration

- - φ/K not suppressed

-> Re-scattering effects not significant for longer lived particles

Small systems:

- The yield of K^{*0}/K shows a hint (~ 2σ level) of decreasing trend with multiplicity in pp and p–Pb collisions: - Hadronic phase can form in pp collisions: critical density reached because of partons multiple scattering

ALICE PLB 802 (2020) 135225

Nuclear modification factors (RAA or Rppb)

$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	
R _{AA} < 1, suppression (presence of in	R_{pPb} = 1, no suppression (absence of nuclear
medium effects)	effects)
Light-flavoured hadrons consistent with	Light-flavoured hadrons consistent with each
each other at $p_T > 8 \text{ GeV}/c \rightarrow \text{No flavour}$	other at $p_T > 6 \text{ GeV}/c \rightarrow \text{No flavour (u, d, s)}$
(u.d.s) dependence	dependence

ALICE http://arxiv.org/abs/2110.10042

Nuclear modification factors (QCP)

ALICE https://arxiv.org/abs/2204.10263

At intermediate p_T, Q_{CP} increases with rapidity, Cronin-like multiple scattering effects are more pronounced in high multiplicity classes.

Nuclear effects are more prominent at higher rapidity and for high multiplicity classes

Summary

✤ p_T spectra

- The shapes of p_T spectra are different for different multiplicity classes ($p_T < 5.0$ GeV/c), spectra become harder with increasing multiplicity

Yields (dN/dy)

- pp, p—Pb, Pb—Pb: Independent of colliding system, energy and driven by multiplicity

$\bullet \text{ Mean } p_T(\langle p_T \rangle)$

- In central Pb-Pb: Mass ordering as expected from hydrodynamics
- pp, p-Pb collisions: Mass ordering violated

Particle ratios

- The yield ratio of K*0/K decreases for central Pb—Pb collisions in comparison to peripheral Pb—Pb collisions, pp, p—Pb collisions and statistical-model predictions -> Re-scattering dominates over regeneration
- Hyperon production increases from low to high multiplicity in pp and p-Pb collisions
- *** Rapidity Asymmetry:** Y_{asym} is observed at low p_T and high multiplicity classes
- ★ Nuclear Modification Factor: At high p_T, R_{AA} of light flavour hadrons show suppression, whereas R_{pPb} is consistent with unity -> Presence of in-medium effects in Pb—Pb collisions
 - Nuclear modification factors of light flavour hadrons are consistent with each other within uncertainties -> No flavour or species dependence
- ♦ Q_{CP} shows Cronin-like effects at intermediate p_T and it is more prominent for the rapidity interval -1.2 < y < -0.9 and highest multiplicity class.</p>
 Thank you