Probing local parity violation in strong interaction via CMW measurement with ALICE at the LHC

Prottay Das (for the ALICE Collaboration) National Institute of Science Education and Research An OCC of Homi Bhabha National Institute HBNI, Jatni- 752050, INDIA

NISER

Prottay Das, DAEHEP 2022

✓ Quantum mechanical property of a physical system

- ✓ Quantum mechanical property of a physical system
- ✓ Refers to flip in the sign of spatial coordinates

- ✓ Quantum mechanical property of a physical system
- ✓ Refers to flip in the sign of spatial coordinates
- ✓ Parity violation observed only in weak interactions [1]

[1] C. S. Wu et al., Phys. Rev. 105, (1957) 1413

Prottay Das, DAEHEP 2022

- ✓ Quantum mechanical property of a physical system
- ✓ Refers to flip in the sign of spatial coordinates
- ✓ Parity violation observed only in weak interactions [1]
- QCD allows for the possibility of sponteneous local parity violation [2]

[1] C. S. Wu et al., Phys. Rev. 105, (1957) 1413 [2] D. Kharzeev et al., Phys.Rev.Lett. 81 (1998) 512-515

- \checkmark Quantum mechanical property of a physical system
- \checkmark Refers to flip in the sign of spatial coordinates
- ✓ Parity violation observed only in weak interactions [1]
- QCD allows for the possibility of sponteneous local parity violation [2]
- Gives rise to chiral phenomena

(Chiral Magnetic Effect, Chiral Separation Effect, Chiral Magnetic Wave,)

[1] C. S. Wu et al., Phys. Rev. 105, (1957) 1413 [2] D. Kharzeev et al., Phys.Rev.Lett. 81 (1998) 512-515

Heavy-ion collisions:

Prottay Das, DAEHEP 2022

Heavy-ion collisions:

✓ Chiral symmetry restoration

Prottay Das, DAEHEP 2022 Phys.Rev.Lett. 81 (1998) 512-515

Heavy-ion collisions:

Chiral symmetry restorationDeconfinement

Heavy-ion collisions:

- Chiral symmetry restoration
- Deconfinement
- QCD vacuum transitions

Prottay Das, DAEHEP 2022

Heavy-ion collisions:

- Chiral symmetry restoration
- Deconfinement
- QCD vacuum transitions
- Extremely strong magnetic field (~10¹⁵ T)

Prottay Das, DAEHEP 2022

Heavy-ion collisions:

- ✓ Chiral symmetry restoration
- ✓ Deconfinement
- ✓ QCD vacuum transitions
- Extremely strong magnetic field (~10¹⁵ T)

All the necessary conditions can be achieved in heavy-ion collisions

Observable

15/12/2022

Observable

15/12/2022

Observable

15/12/2022

ALICE detectors

Analysis details

Number of events	~240x10 ⁶
Particles	Hadrons, pions, kaons, protons
Kinematic range	η <0.8
	0.2 <p<sub>T<2.0 GeV/c</p<sub>
Centrality (%)	0 - 80

Elliptic flow vs charge asymmetry

 \checkmark v₂ of positive hadrons show a different trend compared to negative hadrons. Non-zero value of normalised slope is observed.

Comparison of r^{Norm}

CMW signal is consistent with zero.

Prottay Das, DAEHEP 2022

BW-LCC model overpredicts the experimental measurements.

 \checkmark CMW signal is consistent with zero at the LHC energies.

Observable: Anisotropic flow

✓ Spatial anisotropy
✓ Momentum anisotropy

✓ Characterised by Fourier coefficients (v_n):

$$E\frac{d^3N}{d^3p} = \frac{d^2N}{2\pi p_T dp_T dy} (1 + \Sigma 2v_n \cos[n(\varphi - \Psi_{n,R})])$$

Phys.Rev.C 58 (1998) 1671-1678

Centrality dependence of r^{Norm},

Normalised slopes are comparable for all particles within uncertainties.

Prottay Das, DAEHEP 2022