Orbital angular momentum at small-x

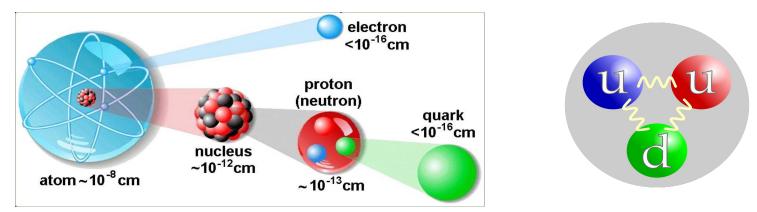
Shaikh Khatiza Banu Kutubuddin

PHYSICAL REVIEW D 105, 114033

In collaboration with

Raktim Abir and Nahid Vasim

Proton Spin - Quark Model



- Protons are one of the three particles that make up atoms the building blocks of the universe.
- In the constituent quark model of the proton, the picture is simple: two spin-up quarks and one spin-down quark.
- This predicts that all the proton spin is carried by the quarks, such that

$$S_q = rac{1}{2}$$

Proton Spin Puzzle

The spin puzzle began when the EMC collaboration measured the proton g1 structure function in 1988. Their data resulted in

 $S_qpprox 0.05$

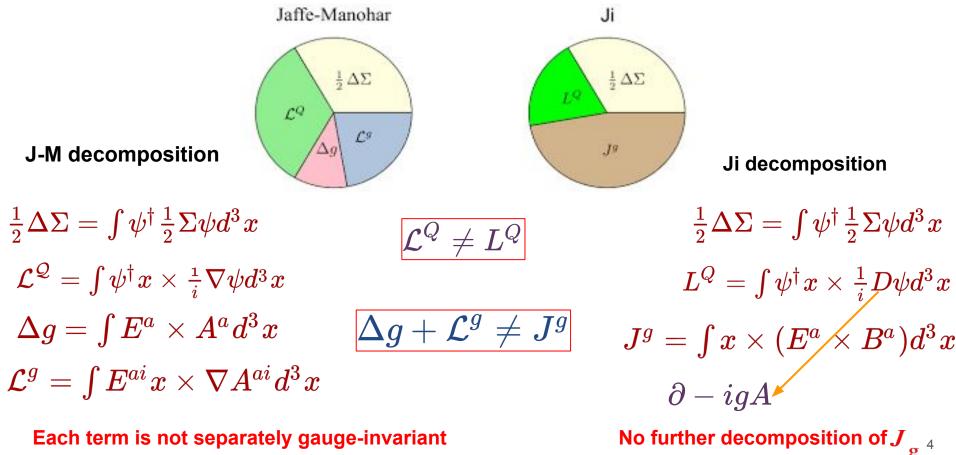
 $\frac{1}{2} = S_q + L_q + S_g + L_g$

It appears (constituent) quarks do not carry all the proton spin (which would have corresponded to $S_q = \frac{1}{2}$).

- carried by spin of gluons
- orbital angular momentum of quarks and gluons

Ashman, J. et al.

Nucleon Spin decomposition



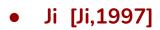
Each term is not separately gauge-invariant

Proton spin decompositions

• Jaffe - Manohar [R. L. Jaffe and A. Manohar, 1990]

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{q}^{can} + L_{g}^{can}$$

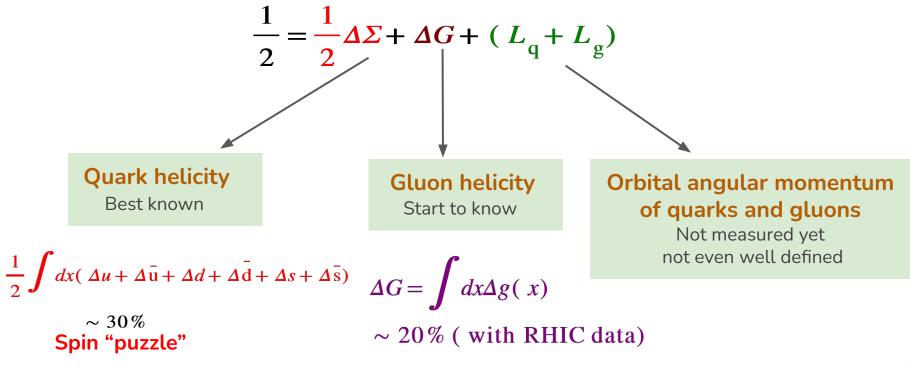
common and well known



$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_{\rm q}^{\rm Ji} + J_{\rm g}$$

Proton's Spin Status

Current understanding of spin



from NLO QCD global analysis

Gluon OAM from Wigner distribution

Orbital angular momentum of gluon can be expressed as the phase space average of the classical orbital angular momentum weighted with the Wigner distribution of polarized gluons in a longitudinally polarized nucleon.

$$L_{g} = \int dx \int d^{2}b_{\perp} \int d^{2}k_{\perp} (b_{\perp} \times k_{\perp}) W(x, b_{\perp}, k_{\perp})$$

e Wigner distribution is the phase space distribution of gluons in transve

The Wigner distribution is the phase space distribution of gluons in transverse momentum (k_{\perp}) - impact parameter (b_{\perp}) space.

$$egin{aligned} W_g(x,k_ot,k_ot,b_ot) &= \int rac{d^2 \Delta_ot}{2\pi^2} e^{-i\Delta_ot,b_ot} \int rac{d^2 z_ot}{2\pi^2} e^{-iz_ot,k_ot} \int rac{dz^-}{2(2\pi)xP^+} e^{-ixP^+z^-} imes \ &\langle P^+,rac{-\Delta_ot}{2},S \,| \mathrm{Tr} \, F^{+i}(0) \, U_{[\eta_1]}(0;z) \, F^{+i}(z) \, U_{[\eta_2]}(z;0) | P^+,rac{\Delta_ot}{2},S \,
angle \end{aligned}$$

Gluon OAM

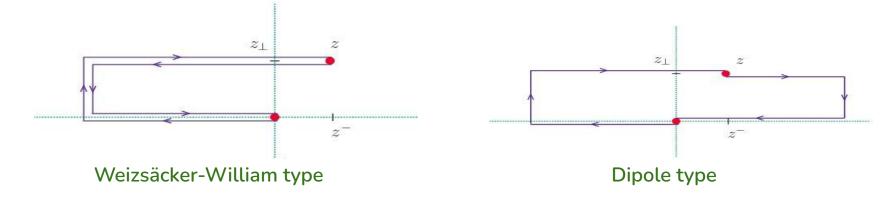
Gluon orbital angular momentum is essentially a two-point correlation function of the field strength tensors at two space-time points.

$$egin{aligned} L_g(x) &= \int d^2 b_ot \, \epsilon^{kj} b_ot^k \, \int rac{d^2 \Delta_ot}{2\pi^2} e^{-i\Delta_ot ..b_ot} \, \int rac{dz^-}{2(2\pi)xP^+} e^{-ixP^+z^-} \lim_{z_ot^\perp o 0} rac{1}{i} rac{\partial}{\partial z_ot^j} \ &\langle P^+, rac{-\Delta_ot}{2}, S \ | ext{Tr} \ F^{+i}(0) \ U_{[\eta_1]}(0;z) \ F^{+i}(z) U_{[\eta_2]}(z;0) | P^+, rac{+\Delta_ot}{2}, S \ &
angle \end{aligned}$$

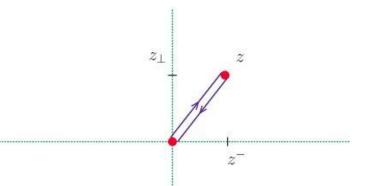
Introducing appropriate **gauge links** between the gauge fields to decide which of type of gluon OAM is this...

Two important choices for gauge links

Staple gauge links (Jaffe-Manohar OAM)

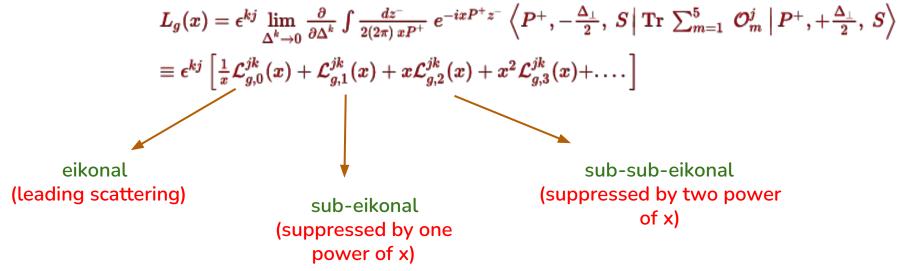


Straight gauge links (Ji's OAM)



Gluon OAM at small-x

Taking the transverse derivative of the gluon OAM operator and expanding the exponential, we get,



OAM of gluons at eikonal limit

In the eikonal approximation, $exp(-ixP+z^-) \simeq 1$ we have derived a generalized form of the gauge-invariant OAM operator at small-x.

$$egin{aligned} \mathcal{L}_{g,0}^{jk}(x) &= -\lim_{\Delta^k o 0} rac{\partial}{\partial \Delta^k} \left< P^+, -rac{\Delta_\perp}{2}, \, S
ight| \, \mathrm{Tr} \, F^{+i} \left(0^-, \, 0_\perp
ight) \, \mathcal{D}_{\mathrm{pure}}^j A^i_{\mathrm{phys,\,o}} \left(0^-, \, 0_\perp
ight) \, \left| P^+, +rac{\Delta_\perp}{2}, \, S
ight
angle \, - \ & \lim_{\Delta^k o 0} rac{\partial}{\partial \Delta^k} \left< P^+, -rac{\Delta_\perp}{2}, \, S
ight| \, igF^{+i} (0^-, 0_\perp) \, U \left(0^-, \eta_1^-; 0_\perp
ight) \left[A^j_{\mathrm{pure}} \left(\eta_1^-, 0_\perp
ight)
ight. \ & U(\eta_1^-, \eta_2^-; 0_\perp) A^i_{\mathrm{phys,o}} \left(\eta_2^-, 0_\perp
ight) - A^i_{\mathrm{phys,o}} \left(\eta_1^-, 0_\perp
ight) U(\eta_1^-, \eta_2^-; 0_\perp) A^j_{\mathrm{pure}} \left(\eta_2^-, 0_\perp
ight)
ight] \ & U(\eta_2^-, 0^-; 0_\perp) \left| P^+, +rac{\Delta_\perp}{2}, \, S
ight
angle. \end{aligned}$$

Under PT transformation

$$\mathscr{L}_{0}^{g}(x,k_{\perp},\Delta_{\perp},S) = \mathscr{L}_{0}^{g}(x,-k_{\perp},-\Delta_{\perp},-S)$$

No contribution from eikonal term !

The bridge between Jaffe and Ji's OAM

$$\mathcal{L}_{g,0}^{jk}(x) = -\lim_{\Delta^{k} \to 0} \frac{\partial}{\partial \Delta^{k}} \left\langle P^{+}, -\frac{\Delta_{\perp}}{2}, S \right| \operatorname{Tr} F^{+i} \left(0^{-}, 0_{\perp}\right) \mathcal{D}_{pure}^{j} A_{phys,o}^{i} \left(0^{-}, 0_{\perp}\right) |P^{+}, +\frac{\Delta_{\perp}}{2}, S \right\rangle - \lim_{\Delta^{k} \to 0} \frac{\partial}{\partial \Delta^{k}} \left\langle P^{+}, -\frac{\Delta_{\perp}}{2}, S \right| igF^{+i}(0^{-}, 0_{\perp}) U \left(0^{-}, \eta_{1}^{-}; 0_{\perp}\right) \left[A_{pure}^{j} \left(\eta_{1}^{-}, 0_{\perp}\right) \right) \\ U \left(\eta_{1}^{-}, \eta_{2}^{-}; 0_{\perp}\right) A_{phys,o}^{i} \left(\eta_{2}^{-}, 0_{\perp}\right) - A_{phys,o}^{i} \left(\eta_{1}^{-}, 0_{\perp}\right) U \left(\eta_{1}^{-}, \eta_{2}^{-}; 0_{\perp}\right) A_{pure}^{j} \left(\eta_{2}^{-}, 0_{\perp}\right) \right] \\ U \left(\eta_{2}^{-}, 0^{-}; 0_{\perp}\right) |P^{+}, +\frac{\Delta_{\perp}}{2}, S \right\rangle.$$

$$\mathcal{L}_{0}^{g} \left(x, k_{\perp}, \Delta_{\perp}, S\right)$$

$$Jl's OAM$$

Gluon OAM at first sub-eikonal order

For the next non-trivial order in the expansion of the exponential, as $exp(-ixP^+z^-) \simeq 1 - ixP^+z^-$

$$\begin{split} \mathcal{L}_{g,1}^{jk}(x) &= i \, P^+ \, \lim_{\Delta^k \to 0} \frac{\partial}{\partial \Delta^k} \Big\langle P^+, -\frac{\Delta_\perp}{2}, \, S \, \Big| \, \mathrm{Tr} \, F^{+i} \left(0^-, 0_\perp \right) \, \partial^j \bar{O}^i_{\mathrm{phys},*} \left(0^-, 0_\perp \right) \, \Big| \, P^+, +\frac{\Delta_\perp}{2}, \, S \Big\rangle \\ &+ i \, P^+ \, \lim_{\Delta^k \to 0} \frac{\partial}{\partial \Delta^k} \Big\langle P^+, -\frac{\Delta_\perp}{2}, \, S \, \Big| \, \mathrm{Tr} \, F^{+i} \left(0^-, 0_\perp \right) \, ig \, \left[\bar{O}^i_{\mathrm{phys},*}, A^j_{\mathrm{res}} \right] \left(0^-, 0_\perp \right) \\ &| P^+, +\frac{\Delta_\perp}{2}, \, S \Big\rangle \, + \, i \, \lim_{\Delta^k \to 0} \frac{\partial}{\partial \Delta^k} \, \Big\langle P^+, -\frac{\Delta_\perp}{2}, \, S \, \Big| \, ig F^{+i} \left(0^-, 0_\perp \right) \, U \left(0^-, \eta_1^-; 0_\perp \right) \\ & \left[A^j_{\mathrm{pure}} \left(\eta_1^-, 0_\perp \right) U(\eta_1^-, \eta_2^-; 0_\perp) \bar{A}^i_{\mathrm{phys},*} \left(\eta_2^-, 0_\perp \right) - \bar{O}^i_{\mathrm{phys},*} \left(\eta_1^-, 0_\perp \right) U(\eta_1^-, \eta_2^-; 0_\perp) A^j_{\mathrm{pure}} \left(\eta_2^-, 0_\perp \right) \Big] \\ & U(\eta_2^-, 0^-; 0_\perp) \Big| \, P^+, +\frac{\Delta_\perp}{2}, \, S \Big\rangle \end{split}$$

Under PT transformation

$$\mathcal{L}^{\mathrm{g}}_{1}(x,k_{\perp},\Delta_{\perp},S) = -\mathcal{L}^{\mathrm{g}}_{1}(x,-k_{\perp},-\Delta_{\perp},-S)$$

Sub-eikonal terms contribute to the gluon OAM !

Conclusion

- In this work, we have derived the general operator form of the OAM of gluon in a longitudinally polarized proton, that is valid for all possible geometrics of the gauge links.
- At an appropriate combination of the extent parameters, this correctly reproduces both Jaffe-Manohar and Ji's OAM, and offers a continuous analytical interpolation between the two.
- This also corroborate the fact that in the Taylor expansion of the phase factor exp(ixP⁺z⁻) only the odd terms in x can contribute to the gluon OAM for longitudinally polarized proton.

THANK YOU

Chen et al. decomposition (2009)

$$J_{QCD} = S_{q}^{'} + L_{q}^{'} + S_{g}^{'} + L_{g}^{'}$$

Here, gauge field decomposes into pure part and physical part.

$$A^{\mu} = A^{\mu}_{
m pure} + A^{\mu}_{
m phys}$$

In QED, we have,

 $A_{
m phys} = A_{\perp}({
m transverse}) \qquad \qquad {
m A}_{
m pure} = {
m A}_{||}({
m longitudinal})$ In $A_{
m phys}^+ = 0$

$$A^{\mu}_{\mathrm{phys},\pm}\left(x^{-},\ x_{\perp}
ight)\ =\ \int_{\pm\infty^{-}}^{x^{-}}d\omega^{-}\ U\left(x^{-},\ \omega^{-};\ x_{\perp}
ight)\ F^{+\mu}\left(\omega^{-},\ x_{\perp}
ight)U\left(\omega^{-},\ x^{-};\ x_{\perp}
ight)$$

Nucleon Spin decomposition

There are two types of decomposition of the proton spin operator: kinetic and canonical. These two types differ by how the OAM operator is split into the quark and gluon contributions.

• Canonical angular momentum decomposition

$$J^{k}_{QCD} = \int d^{3}x \left[\psi^{\dagger} \sigma^{k} \psi + \psi^{\dagger} (\vec{x} \times (-\vec{i\partial}))^{k} \psi + E^{l} (\vec{x} \times \nabla)^{k} A^{l} + (\vec{A} \times \vec{E})^{k} \right]$$
quark part
quark part
quark part

• Kinetical angular momentum decomposition

$$J^{k}_{QCD} = \int d^{3}x \left[\psi^{\dagger} \sigma^{k} \psi + \psi^{\dagger} (\vec{x} \times (-i\partial \overset{\rightarrow}{-} gA))^{k} \psi + E^{l} (\vec{x} \times \overrightarrow{\nabla})^{k} A^{l} + (\vec{A} \times \vec{E})^{k} \right]$$

Kinetic OAM gluon OAM