Effect of critical point on Λ -hyperon spin polarization

Sushant Kumar Singh Variable Energy Cyclotron Centre, Kolkata

based on arXiv:2110.15604

XXV DAE-BRNS High Energy Physics Symposium, IISER Mohali

December 12-16, 2022

Large OAM in non-central heavy-ion collision

arXiv:0910.4114

- Nuclei carry a large orbital angular momentum (OAM), $L_0 = pb \simeq A \sqrt{s_{NN}} b/2.$
- e.g. for $\sqrt{s_{NN}} = 200$ GeV and b = 5 fm, $L_0 \sim 5 \times 10^5$.
- A fraction of L₀ is transferred to QGP fireball.

Initial angular momentum of the fireball is then

$$J_{y} \sim \int dx \int dy \ x \frac{dP}{dxdy} = \int dx \int dy \ x \left[T(x - b/2, y) - T(x + b/2, y)\right] \frac{\sqrt{s_{NN}}}{2}$$

PRC77, 024906 (2008)

Spin polarization of hadrons

Parton scattering polarizes quarks along the OAM direction due to spin-orbital coupling in QCD, $P_a \sim -0.3$ at RHIC.

PRL 94, 102301 (2005)	PHYSICAL REVIEW	LETTERS	week ending 18 MARCH 2005
Globally Polarized Quark-Gluon Plasma in Noncentral $A + A$ Collisions			
	Zuo-Tang Liang ¹ and Xin-Ni	ian Wang ^{2,1}	
¹ Depart. ² Nuclear Science Division,	ment of Physics, Shandong University, Jin MS 70R0319, Lawrence Berkeley Nation (Received 25 October 2004; published	nan, Shandong 250100, China nal Laboratory, Berkeley, Califo ed 14 March 2005)	rnia 94720, USA
Produced partons the reaction plane in	have a large local relative orbital angular n the early stage of noncentral heavy-ior	momentum along the direction on collisions. Parton scattering is	ppposite to shown to
polarize quarks alon lead to many obser transverse polarizati resonances will have studied within differ	g the same direction due to spin-orbital co vable consequences, such as left-right a on of thermal photons, dileptons, and had e an azimuthal asymmetry similar to the e ent hadronization scenarios and can be ea	upling. Such global quark polari asymmetry of hadron spectra a lrons. Hadrons from the decay of elliptic flow. Global hyperon pola asily tested.	zation will ınd global f polarized ırization is

One distinctive signature of an OAM would be the polarization of the emitted hadrons. Considering hadronization via quark recombination, $P_{\Lambda} = P_s \approx P_q$, for example.

Experimental observation of A-polarization

nature

Explore content Y About the journal Y Publish with us Y

nature > letters > article

Published: 03 August 2017

Global / hyperon polarization in nuclear collisions

The STAR Collaboration

Nature 548, 62-65 (2017) Cite this article

7598 Accesses | 379 Citations | 210 Altmetric | Metrics

The $\sqrt{s_{NN}}$ -averaged polarizations indicate a vorticity of $\omega = (9\pm 1)\times 10^{21}\,{\rm s}^{-1}$, with a systematic uncertainty of a factor of two, mostly owing to uncertainties in the temperature. This far surpasses the vorticity of all other known fluids, including solar subsurface flow²¹ (10⁻⁷ s⁻¹); large-scale terrestrial atmospheric patterns²⁴ (10⁻⁷ s⁻¹); supercell tornado cores³⁵ (10⁻¹ s⁻¹); the great red spot of Jupiter²⁶ (up to 10⁻⁴ s⁻¹); and the rotating, heated soap bubbles (100 s⁻¹) used to model climate change²⁷. Vorticities of up to 150 s⁻¹ have been measured in turbulent flow²⁸ in bulk superfluid He II, and Gomez *et al.*²⁸ have recently produced superfluid nanodroplets with $\omega = 10^7 {\rm s}^{-1}$.

Cooper-Frye formula for particles with spin

Momentum spectrum of of i^{th} hadron is given by

 $E \frac{dN_i}{d^3p} = \int_{\Sigma} (d\Sigma.p) f_i(x,p) \quad \rightarrow \quad \text{Cooper-Frye prescription}$

Polarization vector for spin-1/2 particles

$$P_{\mu}(x,p) = -rac{1}{8m}\epsilon_{\mu
ho\sigma au}(1-n_F)arpi^{
ho\sigma}p^{ au} + \mathcal{O}(arpi^2)$$

where

$$\varpi^{\rho\sigma} = \frac{1}{2} (\partial_{\sigma}\beta_{\rho} - \partial_{\rho}\beta_{\sigma}) \quad \text{with} \quad \beta_{\rho} = \frac{u_{\rho}}{T}$$
Ann. Phys. 338:32 (2013)

Space-integrated mean polarization vector

$$P_{\mu}(p) = \frac{\int_{\Sigma} (d\Sigma . p) P_{\mu}(x, p) n_{F}(x, p)}{\int_{\Sigma} (d\Sigma . p) n_{F}(x, p)}$$

Hydrodynamic simulation for global polarization

Available online at www.sciencedirect.com ScienceDirect Nuclear Physics A 967 (2017) 764–767

www.elsevier.com/locate/nuclphysa

Vorticity in the QGP liquid and A polarization at the RHIC Beam Energy Scan

Iurii Karpenko^{a,b}, Francesco Becattini^{a,c}

Initial condition : UrQMD string/hadron cascade, all components of thermal vorticity tensor are initially non-vanishing. Simulation on a constant energy density hypersurface (0.5 GeV/fm³).

Why consider EoS?

The spin polarization vector in the rest frame of a hyperon at some point in the fluid is given by (Ann. Rev. Nucl. Part. Sci. 70 (2020) 395)

$$ec{S}^*(x,p) \propto rac{\gamma}{T^2} ec{v} imes
abla T + rac{1}{T} \left(ec{\omega} - (ec{\omega} \cdot ec{v}) ec{v}
ight) + rac{1}{T} \gamma ec{A} imes ec{v}$$

- \vec{S}^* depends on ∇T , $\vec{\omega} = \nabla \times \vec{v}$ and acceleration of fluid cell.
- In nutshell, gradients of temperature and flow-velocity.
- Gradients depend on the expansion dynamics of the system.
- Expansion depends on the EoS.

Description of model

- We study A-hyperon spin polarization.
- $S^{\gamma} \propto [p_{\tau} \varpi_{\eta x} + p_{x} \varpi_{\tau \eta} + p_{\eta} \varpi_{x \tau}]$ where $\varpi_{\mu \nu} = \frac{1}{2} \left[\partial_{\nu} \left(\frac{u_{\mu}}{T} \right) \partial_{\mu} \left(\frac{u_{\nu}}{T} \right) \right].$
- Need an IC with non-zero $\partial_{\eta} u_x$ or $\partial_x u_{\eta}$. Simple Glauber model will not work.
- Glauber model for transverse profile along with symmetric rapidity profile for energy density has zero $\varpi_{\eta x}$ at all times.
- We use Glauber model + symmetric rapidity profile + local energy-momentum conservation. C. Shen *et al.* PRC 102 (2020) 014909

Description of model

Equation of state & transport coefficients

- EoS model of BEST collaboration PRC 101, 034901 (2020).
- $P_{QCD}(\mu_B, T) = T^4 \sum_n c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$
- $T^4c_n(T) \rightarrow T^4c_n^{\text{Non-Ising}}(T) + T_c^4c_n^{\text{Ising}}(T)$ or $P_{QCD}(\mu_B, T) = P^{\text{reg}}(\mu_B, T) + P^{\text{crit}}(\mu_B, T).$
- Obtain P^{crit} by mapping to 3D-Ising model.
- Choose and adjust P^{reg} such that $P_{QCD}(0, T) = P^{\text{LAT}}(T)$.

Near the critical point, the transport coefficients diverge as

$$\zeta \sim \xi^3$$
 , $\eta \sim \xi^{0.05}$

The critical behavior of these transport coefficients can be modeled as

$$\zeta = \zeta_0 \left(\frac{\xi}{\xi_0}\right)^3 \qquad , \qquad \eta = \eta_0 \left(\frac{\xi}{\xi_0}\right)^{0.05}$$

 ξ_0 is a parameter for deciding the boundary of the critical region. We choose $\xi_0 = 1.75$ fm (mostly taken as 1 fm). ζ_0 and η_0 taken as

$$\eta_0(\mu_B, T) = 0.08 \left(\frac{\varepsilon + p}{T}\right)$$
$$\zeta_0(\mu_B, T) = 15\eta_0(\mu_B, T) \left(\frac{1}{3} - c_s^2\right)^2$$

Hydrodynamic trajectories in phase diagram

SKS and J. Alam, arXiv:2205.14469

Evolution of thermal vorticity

SKS and J. Alam, arXiv:2110.15604

Suppression of spin polarization of Λ -hyperons

 Polarization calculated on constant energy density hypersurface 0.3 GeV/fm³. No afterburner.

SKS and J. Alam, arXiv:2110.15604

Comparison with experimental data

 In S. Ryu et al., PRC 104, 054908 (2021), non-zero initial vorticity is obtained by introducing a parameter f that controls the fraction of longitudinal momentum that can be attributed to the flow velocity.

SKS and J. Alam, arXiv:2110.15604

Prediction near critical point

Au+Au collisions at $\sqrt{s_{NN}} = 14.5$ GeV with b = 5.6 fm

SKS and J. Alam, arXiv:2110.15604

 We also find that the other bulk observables like elliptic flow, *p_T*-spectra etc. are not much affected due to the CP. SKS and J. Alam, arXiv:2205.14469.

A non-relativistic analogy

For a non-relativistic fluid with constant η and ζ

$$\frac{\partial \vec{\omega}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right) \vec{\omega} + \theta \vec{\omega} = \left(\vec{\omega} \cdot \vec{\nabla}\right) \vec{v} + \frac{1}{\rho^2} \vec{\nabla} \rho \times \vec{\nabla} p - \frac{1}{\rho^2} \left(\zeta + \frac{1}{3}\eta\right) \vec{\nabla} \rho \times \vec{\nabla} \theta - \frac{\eta}{\rho^2} \vec{\nabla} \rho \times \nabla^2 \vec{v} + \frac{\eta}{\rho} \nabla^2 \vec{\omega}.$$

FreeImages & ScienceAlert

- Observables dependent on gradients are more sensitive to the EoS.
- We observe a suppression in thermal vorticity and hence, polarization of Λ-hyperons, as the CP is approached.
- Suppression in the rapidity distribution of spin polarization may be useful for locating CP. Further study needed.

Thank You !!!

(Backup) Testing relativistic hydrodynamic code

Comparison with experimental data

SKS and J. Alam, arXiv:2110.15604

SKS and J. Alam, arXiv:2110.15604