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Motivation

 Effective Field theories provide us very powerful ways to
organizing the computation of low-energy effects in QFT.

* QCD at low temperature (T) is well described by the
dynamics of pions.

* The long distance or low energy physics at very high
temperatures are qualitatively well understood by an
effective weak coupling expansion.

* This weak coupling expansion relies on the separation of
hierarchy of scales as, T >> gT >> g*T , where g is the
gauge coupling at momentum scale T .

* This separation of scales break down when T is few
hundred MeV, when g~1.

* However, this is the range of temperature which is of great
physical interest. The transition of a chiral symmetry
broken hadronic state to a symmetry restored quark-gluon
state occurs here.
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Global Symmetries and the EFT

* This temperature range is also seems to be most relevant for
experiments using heavy-ion collisions.

* Here we try to propose an Effective Field Theory designed to describe
the physics of QCD around Cross-over temperature T,

* We in this case proceed with the global symmetries of the QCD as the
guiding principle and arrange the EFT in mass dimension of the
relevant terms which obeys this.

* Particularly we use Vector (V) and Axial (A) symmetries of QCD for N¢
number of flavours, namely SUy (Ny) x SU4(Ny) symmetry.

 We will also find that as our theory is at finite temperature the
Lorentz group after Euclidization will be reduced to a rotation group
with time reversal symmetry, i.e. a cylindrical symmetry O(3) x Zs.

* Discrete symmetries such as Charge conjugation (C), Parity (P) and
Time reversal (T) and CPT will also be our guiding principle to
construct relevant Lagrangian terms.
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Outline of the work

Taking the global symmetries of QCD as our guiding
principle we write here an EFT near cross-over temperature
of QCD.

* Up-to dimension-6 apart from having current-current
interactions we also include dimension-6 gradient operators
in our theory.

* We treat the theory in Mean field Approximation to get free
energy and gap equation. We also find a second solution of
critical temperature at chiral limit, which can be then used
to limit the coupling strength of dimension-6 gradient term.

* We proceed to continue with pionic fluctuations, which
after comparing with lattice data fixes all the LECs of EFT.

 We compute the predictions of the EFT after fixing the LECs,
the results are found to be pleasing.
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Predictions of the EFT

* We at first present the predictions of the EFT here, for f/T of
pions,
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Predictions of the EFT

* For M. /T of pions the predictions are as follows,
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Predictions of the EFT

* For urof pions the predictions of EFT are as follows,
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The EFT Lagrangian

We will Work with Euclidean Dirac matrices which are
known to be Hermitian such that, v4 = —iyg and 75 = 71727374
with the generators, S, = —i[y., 1]/4, and & =y, .

The most general Lagrangian which can be written with
these symmetries up-to dimesion-6 is,

L = d*Top + vdgp + d* PV + Lg

Where, Lg = LU0 4 L8728 with,
current d61 T 2 T a 2 d62 o_a 2 7. 2
Ly =+ 7 [(Yy)" + WisT"Y)] + 3 [(Y7%9)" + (Yivs)7]
0 0

s, 4% ., d% p  d% - 2

+ T—g(dwu/)) + T—Oz(lbi’mb) + T—02(¢75’Y4¢) + T—OQ(W’YS'YW)
d67 3 _ d68 _ —

+ T_g[(w’m%)z + (Y5727 P)?] + T_g[(zbi%”ratb)z + ($irs i y)’]
469 B 460  _ _

+ T_g[(¢i5i4¢)2 + (9S8 79)%] + T_g[(wiSm’rW)Q + (¥ Sij1)°]

. 16
. And, Egradlent _ %wvvvw
0
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Mean Field Theory (MFT)

We now proceed to obtain a fermionic mean field approximation to
evaluate the thermodynamic properties of this EFT.

We use the operator Identity,

djozwﬁ — 6@6 (15@ + (@aw;@ - 5045 <1;w>)

where a and [ represents combined spinor-colour-flavor indices.

With this identity our current-current operators in the MFT limit
becomes, (¥Ty)” = 2(dw) [Te(T)(PTy) — (YITY)] — ($v)? [(Tr(T))? — Te(IT)]
Hence our MFT Lagrangian takes the form,

LY = Pdyp + d" PV + P Toyy Where, X = %@w)
2 76
— NZ—S\EQ + Septp + %L/?WWM And, m = d>Ty+ %
0
= @y + APV + my with, N' = 4NN,
NI L vy 27
N T T—ng (0

* With, X = (W +2)d% — 2d%% — d% + 345 + d* — 3d% — %d69 + gdm
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Pionic fluctuations around mean field theory

* The pionic theory can be realized by writing fluctuations about
condensate in axial direction as local isospin waves
parametrized by,

w N 67;71'@7-@75/(2f)w ’ and T,B N Tze’iﬂ'aq-a,m/(Zf)

* Integrating out fermions up-to one loop we get the general for
of the pionic effective theory to look like,

1
L7 = = [(04m)? + H(VT)? + PT5n°] + LG

2
* Matching two point functions in the original MFT and pionic
theory we get,

N N
2= -IR0) = - 720 + 740 0)]
erz 0O IO +ATC00) 4 7)(0) _ I (0) + AT (0) + A (0)
o o )
T ZiP0)+AZE0(0) 7.1 (0) 7,7 (0) + AZ " (0)
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Pionic fluctuations around mean field theory
 Where,

o Q
AT AT ATHO i ;
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Matching with lattice results

* To obtain the predictions from our EFT, we have to fix the
LECs of the theory.

* We fix the LECs in our theory by fitting our parameters of
pionic theory against the lattice results.

* We particularly use the lattice results of Brandt et al., Phys.
Rev. D 90 (2014) no.5, 0545009.

* Their definitions of pionic theory constants (ug, f, m) are
related to our definitions by,

up=vet , fr=fVet , me=To /3R A

* We use the lattice data set C1, at T=177 MeV and chi square
fit ug, fz/T, my/T and T, to get the best-fit values of LECs,
and then proceed to evaluate the errors associated with
both dependent and independent variable using bootstrap
method.
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Values of LECs and the dependent variables

~

T M T
Lat 0 Xlz)est—fit d3 d4 d6 A

(MeV) | T, | (MeV)

177 | 2 | 650 i'(?_olf 0.1940%50763 |1.2537+0:07%8 | —0.006210:0795 | 465.35+3533

In the Chiral Limit,

T.(0) = Critical temperature, k, = curvature of critical line, k, = higher order curvature

T.(0)
(MeV) i 4
147.1974:64 0.01699-:9004 0.0001473:99901
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Thank You.
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Back-up Slides
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Free Energy related to MFT

* The Free energy density of this MFT is calculated to be,
QX,m,T) =N [TO ¥2 4 IS, m T)]

4\
where, I*"(,m,T)=I1(2,m,T)+ (%, m,T)
76 4 4\4 4
19(%,m,T) = — d 2/ dp (d)p From
(d*)°Ty J (2m)* p*> + m? gradient

After g mS (23 —30log ((d%”"—fw)) term
performing mmme (d*)3T 76872 (d*)3
dimensional 46 d3p p4
regularization + /
in 3 dimension (d4)3T02 (2W)3(d4)3 Ep (eEp/T + 1)

1 4
I(2,m,T) = 5/ d’p log(p* +m2)

1
(427T ) From
__m log rest of the
6472 (d*)? d4 2M? Fermionic
T _Ep Lagrangian
d3p 1 ( 7 1)
+ Gy | o (e 4
14-12-2022 18

Pritam Sen, TIFR. (‘\Ctifr



The Gap Equation and Condensate

 The value of the condensate can be obtained as a solution of

the Gap equation.
P eq 90)

The Gap Equation correspond to the equation, oy =0

Hence, written implicitly the gap equation becomes,

2
—N 02+11(m T)+ I{(m,T)| =0

Where the subscript 1 in I terms, signifies the first derivative
with respect to condensate has been taken.

Hence the condensate turn out to be,

T g
22\2 = —[IL(m,T) + I{(m, T)]

Explicit expressions of derivatives of I’ s are quite cumbersome

and are not provided here for simplicity.
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Critical Temperature at Chiral Limit

* We can also proceed to calculate the Critical Temperature T,
in the chiral limit, i.e.atd® = 0.

* The expression of critical temperature can be obtained from
solving the equation,
820X, T.)
0%Y

d3=0

Which leads to,

2

T,
N ﬁ + 15(0,T,) + I3(0, Tc)] =0

* And we get the relation,

1
=~ [212(0,Tc) + 215(0, 7o)
TP N ST T2 [1 N 77r2d"6T3]
S 12(d4)3TE  24(d4)STy  12(d4)3T¢ 2(d4)3T?
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Constraint on Gradient Term and Critical
Temperature

* Considering only the case when A > 0 we obtain,
_ 2(d4)3T2
6 0
S T2

* Looking carefully at the relation for A with T, we obtain two
solutions for critical temperature,

V16872d5 + X + VA 43/2\/\/1687r2d"6+>\—\/i
T. = To(d*)

VT —dSAL/4 ’ VTV do A1/
e At, /% >~ o the solution at LHS is ruled out.

Tc — T()(d4)3/2 \/

* At d% < 0 both the solutions can result in real temperature iff,
- - A
1687°d° > —\ d°
68T°d” > -\, = | |<1687T2
* |t can be shown that the solution at rhs is the consistent
solution for T,, and the relation at lhs gives rise to a new

different solution for critical temperature.
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Constraint on Gradient Term and Critical
Temperature

* The second solution for critical temperature is found to be at

temperature,
c T7d67?

* This solution tends to infinity as d® — 0~. As d® is decreased

from 07,
6 (d)°T5 : - .
* At, "= ———— the second solution coincides with /. and,
4 SC 2 .
° At, 6 — _2@)° 1y the second solution results T.. = () .
Tm2T?2
We neglect, the Larger We neglect, the Smaller
solution if solution if
_ 4 3T2 d)37T2 B d4)37T2
O>d6>—(d)2 20 _(7 )2T20>d6>_2(7 )QTQO
77'(' Tc el LI
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Curvature coefficients at Chiral limit

* At finite chemical potential we know the curvature coefficients
are defined as, [A. Bazzavov et al. [HotQCD] Phys. Lett. B 795

(2019)]’T( ) = T,(0) — & Wp . HE + O(ub)
B = e T0)] ~ o T

* At, uB = 3, we get, T,.(0) = T,

* We find at chiral limit the curvature coefficients at leading
order at d® is given by following expressions,

Ko = { L gGTC(O)z} 1 [1 B QWQgGTC(O)Q}

62 3(d4)3T2)  6n2 (d4)3T2
and,
{ 1 5d5T.(0)? } 1 [1 20w2J6TC(0)2}
kA = — = —
YT l72rt 54(ad)3r212] T T2nt 3(d4)3T?2
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