<u>An effective field theory of thermal QCD</u> with higher dimensional gradient term

Pritam Sen

with Sourendu Gupta, Rishi Sharma

Tata Institute of Fundamental research, Mumbai

At XXV DAE-BRNS HEP Symposium 2022, IISER Mohali

14 th December, 2022

Motivation

- Effective Field theories provide us very powerful ways to organizing the computation of low-energy effects in QFT.
- QCD at low temperature (T) is well described by the dynamics of pions.
- The long distance or low energy physics at very high temperatures are qualitatively well understood by an effective weak coupling expansion.
- This weak coupling expansion relies on the separation of hierarchy of scales as, $T >> gT >> g^2T$, where g is the gauge coupling at momentum scale T.
- This separation of scales break down when T is few hundred MeV, when $g \sim 1$.
- However, this is the range of temperature which is of great physical interest. The transition of a chiral symmetry broken hadronic state to a symmetry restored quark-gluon state occurs here.

Global Symmetries and the EFT

- This temperature range is also seems to be most relevant for experiments using heavy-ion collisions.
- Here we try to propose an Effective Field Theory designed to describe the physics of QCD around Cross-over temperature T_{co}
- We in this case proceed with the global symmetries of the QCD as the guiding principle and arrange the EFT in mass dimension of the relevant terms which obeys this.
- Particularly we use Vector (V) and Axial (A) symmetries of QCD for N_f number of flavours, namely $SU_V(N_f) \times SU_A(N_f)$ symmetry.
- We will also find that as our theory is at finite temperature the Lorentz group after Euclidization will be reduced to a rotation group with time reversal symmetry, i.e. a cylindrical symmetry $O(3) \times Z_2$.
- Discrete symmetries such as Charge conjugation (C), Parity (P) and Time reversal (T) and CPT will also be our guiding principle to construct relevant Lagrangian terms.

Outline of the work

- Taking the global symmetries of QCD as our guiding principle we write here an EFT near cross-over temperature of QCD.
- Up-to dimension-6 apart from having current-current interactions we also include dimension-6 gradient operators in our theory.
- We treat the theory in Mean field Approximation to get free energy and gap equation. We also find a second solution of critical temperature at chiral limit, which can be then used to limit the coupling strength of dimension-6 gradient term.
- We proceed to continue with pionic fluctuations, which after comparing with lattice data fixes all the LECs of EFT.
- We compute the predictions of the EFT after fixing the LECs, the results are found to be pleasing.

Predictions of the EFT

• We at first present the predictions of the EFT here, for f/T of pions,

Predictions of the EFT

• For M_{π}/T of pions the predictions are as follows,

Predictions of the EFT

• For u_f of pions the predictions of EFT are as follows,

The EFT Lagrangian

- We will Work with Euclidean Dirac matrices which are known to be Hermitian such that, $\gamma_4 = -i\gamma_0$ and $\gamma_5 = \gamma_1\gamma_2\gamma_3\gamma_4$ with the generators, $S_{\mu\nu} = -i[\gamma_{\mu}, \gamma_{\nu}]/4$, and $\bar{\psi} = \psi^{\dagger}\gamma_4$.
- The most general Lagrangian which can be written with these symmetries up-to dimesion-6 is,

 $\mathcal{L} = d^3 T_0 \bar{\psi} \psi + \bar{\psi} \partial_4 \psi + d^4 \bar{\psi} \nabla \psi + \mathcal{L}_6$

• Where, $\mathcal{L}_{6} = \mathcal{L}_{6}^{\text{current}} + \mathcal{L}_{6}^{\text{gradient}}$, with , $\mathcal{L}_{6}^{\text{current}} = + \frac{d^{61}}{T_{0}^{2}} [(\bar{\psi}\psi)^{2} + (\bar{\psi}i\gamma_{5}\tau^{a}\psi)^{2}] + \frac{d^{62}}{T_{0}^{2}} [(\bar{\psi}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\psi)^{2}] + \frac{d^{63}}{T_{0}^{2}} (\bar{\psi}\gamma_{4}\psi)^{2} + \frac{d^{64}}{T_{0}^{2}} (\bar{\psi}i\gamma_{i}\psi)^{2} + \frac{d^{65}}{T_{0}^{2}} (\bar{\psi}\gamma_{5}\gamma_{4}\psi)^{2} + \frac{d^{66}}{T_{0}^{2}} (\bar{\psi}i\gamma_{5}\gamma_{i}\psi)^{2} + \frac{d^{67}}{T_{0}^{2}} [(\bar{\psi}\gamma_{4}\tau^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{4}\tau^{a}\psi)^{2}] + \frac{d^{68}}{T_{0}^{2}} [(\bar{\psi}i\gamma_{i}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\gamma_{i}\tau^{a}\psi)^{2}] + \frac{d^{69}}{T_{0}^{2}} [(\bar{\psi}iS_{i4}\psi)^{2} + (\bar{\psi}S_{ij}\tau^{a}\psi)^{2}] + \frac{d^{60}}{T_{0}^{2}} [(\bar{\psi}iS_{i4}\tau^{a}\psi)^{2} + (\bar{\psi}S_{ij}\psi)^{2}]$ • And, $\mathcal{L}_{6}^{\text{gradient}} = \frac{\tilde{d}^{6}}{T_{0}^{2}} \bar{\psi} \nabla \nabla \psi$

tifr

The EFT Lagrangian

- We will Work with Euclidean Dirac matrices which are known to be Hermitian such that, $\gamma_4 = -i\gamma_0$ and $\gamma_5 = \gamma_1\gamma_2\gamma_3\gamma_4$ with the generators, $S_{\mu\nu} = -i[\gamma_{\mu}, \gamma_{\nu}]/4$, and $\bar{\psi} = \psi^{\dagger}\gamma_4$.
- The most general Lagrangian which can be written with these symmetries up-to dimesion-6 is,

 $\mathcal{L} = d^3 T_0 \bar{\psi} \psi + \bar{\psi} \partial_4 \psi + d^4 \bar{\psi} \nabla \psi + \mathcal{L}_6$

• Where,
$$\mathcal{L}_{6} = \mathcal{L}_{6}^{\text{current}} + \mathcal{L}_{6}^{\text{gradient}}$$
, with ,
 $\mathcal{L}_{6}^{\text{current}} = \left(+ \frac{d^{61}}{T_{0}^{2}} [(\bar{\psi}\psi)^{2} + (\bar{\psi}i\gamma_{5}\tau^{a}\psi)^{2}] + \frac{d^{62}}{T_{0}^{2}} [(\bar{\psi}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\psi)^{2}] + \frac{d^{63}}{T_{0}^{2}} (\bar{\psi}\gamma_{4}\psi)^{2} + \frac{d^{64}}{T_{0}^{2}} (\bar{\psi}i\gamma_{i}\psi)^{2} + \frac{d^{65}}{T_{0}^{2}} (\bar{\psi}\gamma_{5}\gamma_{4}\psi)^{2} + \frac{d^{66}}{T_{0}^{2}} (\bar{\psi}i\gamma_{5}\gamma_{i}\psi)^{2} + \frac{d^{67}}{T_{0}^{2}} [(\bar{\psi}\gamma_{4}\tau^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{4}\tau^{a}\psi)^{2}] + \frac{d^{68}}{T_{0}^{2}} [(\bar{\psi}i\gamma_{i}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\gamma_{i}\tau^{a}\psi)^{2}] + \frac{d^{69}}{T_{0}^{2}} [(\bar{\psi}iS_{i4}\psi)^{2} + (\bar{\psi}S_{ij}\tau^{a}\psi)^{2}] + \frac{d^{60}}{T_{0}^{2}} [(\bar{\psi}iS_{i4}\tau^{a}\psi)^{2} + (\bar{\psi}S_{ij}\psi)^{2}]$
• And, $\mathcal{L}_{6}^{\text{gradient}} = \frac{\tilde{d}^{6}}{T_{0}^{2}} \bar{\psi} \nabla \nabla \psi$

Ctifr

Mean Field Theory (MFT)

- We now proceed to obtain a fermionic mean field approximation to evaluate the thermodynamic properties of this EFT.
- We use the operator Identity,

$$\bar{\psi}_{\alpha}\psi_{\beta} = \delta_{\alpha\beta}\langle\bar{\psi}\psi\rangle + \left(\bar{\psi}_{\alpha}\psi_{\beta} - \delta_{\alpha\beta}\langle\bar{\psi}\psi\rangle\right)$$

where α and β represents combined spinor-colour-flavor indices.

- With this identity our current-current operators in the MFT limit becomes, $(\bar{\psi}\Gamma\psi)^2 = 2\langle\bar{\psi}\psi\rangle [\operatorname{Tr}(\Gamma)(\bar{\psi}\Gamma\psi) (\bar{\psi}\Gamma\Gamma\psi)] \langle\bar{\psi}\psi\rangle^2 [(\operatorname{Tr}(\Gamma))^2 \operatorname{Tr}(\Gamma\Gamma)]$
- Hence our MFT Lagrangian takes the form,

Mean Field Theory (MFT)

- We now proceed to obtain a fermionic mean field approximation to evaluate the thermodynamic properties of this EFT.
- We use the operator Identity,

$$\bar{\psi}_{\alpha}\psi_{\beta} = \delta_{\alpha\beta}\langle\bar{\psi}\psi\rangle + \left(\bar{\psi}_{\alpha}\psi_{\beta} - \delta_{\alpha\beta}\langle\bar{\psi}\psi\rangle\right)$$

where α and β represents combined spinor-colour-flavor indices.

- With this identity our current-current operators in the MFT limit becomes, $(\bar{\psi}\Gamma\psi)^2 = 2\langle\bar{\psi}\psi\rangle [\operatorname{Tr}(\Gamma)(\bar{\psi}\Gamma\psi) (\bar{\psi}\Gamma\Gamma\psi)] \langle\bar{\psi}\psi\rangle^2 [(\operatorname{Tr}(\Gamma))^2 \operatorname{Tr}(\Gamma\Gamma)]$
- Hence our MFT Lagrangian takes the form,

Pionic fluctuations around mean field theory

 The pionic theory can be realized by writing fluctuations about condensate in axial direction as local isospin waves parametrized by,

$$\psi \to e^{i\pi^a \tau^a \gamma_5/(2f)} \psi$$
 , and $\bar{\psi} \to \bar{\psi} e^{i\pi^a \tau^a \gamma_5/(2f)}$

 Integrating out fermions up-to one loop we get the general for of the pionic effective theory to look like,

$$\mathcal{L}_{f}^{\pi} = \frac{1}{2} \left[(\partial_{4}\pi)^{2} + c^{4} (\nabla\pi)^{2} + c^{2} T_{0}^{2} \pi^{2} \right] + \mathcal{L}_{6}^{\pi}$$

 Matching two point functions in the original MFT and pionic theory we get,

$$f^{2} = -\frac{\mathcal{N}}{4}\mathcal{I}_{44}^{(1)}(0) = -\frac{\mathcal{N}}{4}\left[\mathcal{I}_{44}^{(0)}(0) + \Delta \mathcal{I}_{44}^{(1,0)}(0)\right]$$

$$c^{2}T_{0}^{2} = -\frac{4\mathcal{I}^{(1)}(0)}{\mathcal{I}_{44}^{(1)}(0)} = -4\frac{\mathcal{I}^{(0)}(0) + \Delta \mathcal{I}^{(1,0)}(0)}{\mathcal{I}_{44}^{(0)}(0) + \Delta \mathcal{I}_{44}^{(1,0)}(0)}, c^{4} = \frac{\mathcal{I}_{ii}^{(1)}(0)}{\mathcal{I}_{44}^{(1)}(0)} = \frac{\mathcal{I}_{ii}^{(0)}(0) + \Delta \mathcal{I}_{ii}^{(1,0)}(0) + \Delta \mathcal{I}_{ii}^{(0,1)}(0)}{\mathcal{I}_{44}^{(0)}(0) + \Delta \mathcal{I}_{44}^{(1,0)}(0)}$$

Pionic fluctuations around mean field theory

• Where,

Matching with lattice results

- To obtain the predictions from our EFT, we have to fix the LECs of the theory.
- We fix the LECs in our theory by fitting our parameters of pionic theory against the lattice results.
- We particularly use the lattice results of Brandt *et al.*, Phys. Rev. D **90** (2014) no.5, 054509.
- Their definitions of pionic theory constants (u_f, f_{π}, m_{π}) are related to our definitions by,

$$u_f=\sqrt{c^4}$$
 , $f_\pi=f\sqrt{c^4}$, $m_\pi=T_0\sqrt{c^2/c^4}$

• We use the lattice data set C1, at T=177 MeV and chi square fit u_f , f_π/T , m_π/T and T_{co} to get the best-fit values of LECs, and then proceed to evaluate the errors associated with both dependent and independent variable using bootstrap method.

Values of LECs and the dependent variables

T _{Lat} (MeV)	$\frac{M}{\pi T_0}$	Т ₀ (MeV)	$\chi^2_{best-fit}$	d ³	d^4	\widetilde{d}^6	λ
177	2	650	5.80×10^{-11}	$0.1940^{+0.0103}_{-0.0169}$	$1.2537^{+0.0778}_{-0.0732}$	$-0.0062^{+0.0768}_{-0.0449}$	465.35 ^{+95.55} -80.68

In the Chiral Limit,

 $T_c(0) =$ Critical temperature, $\kappa_2 =$ curvature of critical line, $\kappa_4 =$ higher order curvature

T _c (0) (MeV)	к ₂	ĸ ₄
$147.19^{+4.64}_{-4.47}$	$0.0169\substack{+0.0004\\-0.0004}$	$0.00014\substack{+0.00001\\-0.00001}$

Free Energy related to MFT

• The Free energy density of this MFT is calculated to be, $\Omega(\Sigma,m,T) = -\mathcal{N}\left[\frac{T_0^2}{4\lambda}\Sigma^2 + I^{\rm tot}(\Sigma,m,T)\right]$

where, $I^{\text{tot}}(\Sigma, m, T) = I(\Sigma, m, T) + I^g(\Sigma, m, T)$

The Gap Equation and Condensate

- The value of the condensate can be obtained as a solution of the Gap equation.
- The Gap Equation correspond to the equation, $\frac{\partial \Omega}{\partial \Sigma} = 0$
- Hence, written implicitly the gap equation becomes,

$$-\mathcal{N}\left[\frac{T_0^2}{2\lambda}\Sigma + I_1(m,T) + I_1^g(m,T)\right] = 0$$

- Where the subscript 1 in *I* terms, signifies the first derivative with respect to condensate has been taken.
- Hence the condensate turn out to be,

$$\frac{T_0^2}{2\lambda}\Sigma = -\left[I_1(m,T) + I_1^g(m,T)\right]$$

• Explicit expressions of derivatives of `I' s are quite cumbersome and are not provided here for simplicity.

14-12-2022

Critical Temperature at Chiral Limit

- We can also proceed to calculate the Critical Temperature T_c in the chiral limit, i.e. at $d^3 = 0$.
- The expression of critical temperature can be obtained from solving the equation,

$$\frac{\partial^2 \Omega(\Sigma, T_c)}{\partial^2 \Sigma} \bigg|_{d^3 = 0} = 0$$

Which leads to,

$$-\mathcal{N}\left[\frac{T_0^2}{2\lambda} + I_2(\mathbf{0}, \mathbf{T_c}) + I_2^g(\mathbf{0}, \mathbf{T_c})\right] = 0$$

• And we get the relation,

$$\begin{aligned} \frac{1}{\lambda} &= -\left[2I_2(0, T_c) + 2I_2^g(0, T_c)\right] \\ &= \frac{T_c^2}{12(d^4)^3 T_0^2} + \frac{7\pi^2 \tilde{d}^6 T_c^4}{24(d^4)^6 T_0^4} = \frac{T_c^2}{12(d^4)^3 T_0^2} \left[1 + \frac{7\pi^2 \tilde{d}^6 T_c^2}{2(d^4)^3 T_0^2}\right] \end{aligned}$$

(tifr

<u>Constraint on Gradient Term and Critical</u> <u>Temperature</u>

• Considering only the case when $\lambda > 0$ we obtain,

• Looking carefully at the relation for λ with T_c we obtain two solutions for critical temperature,

$$T_c = T_0 (d^4)^{3/2} \frac{\sqrt{\sqrt{168\pi^2 \tilde{d^6} + \lambda} + \sqrt{\lambda}}}{\sqrt{7}\pi \sqrt{-\tilde{d^6}} \lambda^{1/4}} , \ T_c = T_0 (d^4)^{3/2} \frac{\sqrt{\sqrt{168\pi^2 \tilde{d^6} + \lambda} - \sqrt{\lambda}}}{\sqrt{7}\pi \sqrt{\tilde{d^6}} \lambda^{1/4}}$$

- At, $\tilde{d}^6 > 0$ the solution at LHS is ruled out.
- At $\tilde{d}^6 < 0$ both the solutions can result in real temperature iff, $168\pi^2 \tilde{d}^6 > -\lambda, \implies |\tilde{d}^6| < \frac{\lambda}{168\pi^2}$
- It can be shown that the solution at rhs is the consistent solution for T_c , and the relation at lhs gives rise to a new different solution for critical temperature.

14-12-2022

<u>Constraint on Gradient Term and Critical</u> <u>Temperature</u>

• The second solution for critical temperature is found to be at temperature,

$$\sqrt{-T_c^2 - \frac{2(d^4)^3 T_0^2}{7 \tilde{d}^6 \pi^2}}$$

• This solution tends to infinity as $\tilde{d}^6 \rightarrow 0^-$. As \tilde{d}^6 is decreased from 0^- ,

• At,
$$\tilde{d}^6 = -\frac{(d^4)^3 T_0^2}{7\pi^2 T_c^2}$$
 the second solution coincides with T_c and,

• At,
$$ilde{d}^6 = -rac{2(d^4)^3 T_0^2}{7\pi^2 T_c^2}$$
 the second solution results $T_c = 0$.

We neglect, the Larger solution if

$$0>\tilde{d}^6>-\frac{(d^4)^3T_0^2}{7\pi^2T_c^2}$$

We neglect, the Smaller solution if

 $\frac{(d^4)^3 T_0^2}{7\pi^2 T_c^2} > \tilde{d}^6 > -2 \frac{(d^4)^3 T_0^2}{7\pi^2 T_c^2}$

Curvature coefficients at Chiral limit

 At finite chemical potential we know the curvature coefficients are defined as, [A. Bazzavov *et al*. [HotQCD] Phys. Lett. B 795 (2019)],

$$T_c(\mu_B) = T_c(0) - \kappa_2 \frac{\mu_B^2}{[T_c(0)]} - \kappa_4 \frac{\mu_B^4}{[T_c(0)]^3} + \mathcal{O}(\mu^6)$$

• At, $\mu_B = 3\mu$, we get, $T_c(0) = T_c$

• We find at chiral limit the curvature coefficients at leading order at \tilde{d}^6 is given by following expressions,

$$\kappa_{2} = \left[\frac{1}{6\pi^{2}} - \frac{\tilde{d}^{6}T_{c}(0)^{2}}{3(d^{4})^{3}T_{0}^{2}}\right] = \frac{1}{6\pi^{2}} \left[1 - \frac{2\pi^{2}\tilde{d}^{6}T_{c}(0)^{2}}{(d^{4})^{3}T_{0}^{2}}\right]$$

and,
$$\kappa_{4} = \left[\frac{1}{72\pi^{4}} - \frac{5\tilde{d}^{6}T_{c}(0)^{2}}{54(d^{4})^{3}\pi^{2}T_{0}^{2}}\right] = \frac{1}{72\pi^{4}} \left[1 - \frac{20\pi^{2}\tilde{d}^{6}T_{c}(0)^{2}}{3(d^{4})^{3}T_{0}^{2}}\right]$$

Ctifr

