Multiplicity dependent study of pions, kaons, and protons production in pp, **p–Pb and AA collisions with ALICE**

Navneet Kumar

On behalf of the ALICE Collaboration

Department of Physics, Panjab University Chandigarh, India

Email: navneet.kumar@cern.ch

(1) Introduction and Motivation

- Systematic measurements of the production of pions, kaons, and protons in pp collisions as a function of chargedparticle multiplicity provide insight into the hadronization mechanism and emergence of collective effects such as radial flow.
- The multiplicity of the high-energy pp collisions at the LHC is comparable to that of p–Pb and peripheral Pb–Pb collisions.
- Identified particle spectra measured in relativistic heavy-ion collisions contain information about the collision dynamics and the entire space-time evolution of the system.
- Origin of strangeness enhancement with increasing multiplicity in small systems is still not understood.

ALICE

(GeV/c) d²N/(dydp_T) (GeV/c)⁻¹ (GeV/c) ALICE VOM multiplicity classes 10⁵ II (× 2⁹) pp, √s = 13 TeV K⁺+K[−] p+p 10⁴ |v| < 0.5• IV ($\times 2^7$) 10^{2} 10³ • VI ($\times 2^5$) VII ($\times 2^4$) • VIII ($\times 2^3$) 10² \frown $d^2 N/(dy dp_T)$ • IX ($\times 2^2$) • X ($\times 2^1$) <u>d</u>p d*N*_/dη>=26.0 10 N/(dy 10 10-2 10^{-3} N/L 10 10 ີ 10⁻⁴ \leq 10 ⟨dN , /dη⟩=2.55 $\langle dN_{cb}/d\eta \rangle = 2.55$ 2 to INEL> Ratio 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 *p*_{_} (GeV/*c*) *p*₋ (GeV/*c*) Eur. Phys. J. C 80 (2020) 693

- The spectra become harder and the maximum of the distributions shifts toward higher values for increasing
- At the higher $p_{\rm T}$ ($\gtrsim 8 \text{ GeV}/c$) the slope of the spectra becomes independent of the multiplicity.
- The hardening of the spectra with multiplicity is more pronounced for the heavier particles.

(4) Particle Spectra

The enhancement in the strange hadron-to-pion ratio is larger for the hadrons with larger strangeness contents.		
		(9) References
m in		
	+	[1] U. W. Heinz, arXiv:hepph/0407360 (2004)
and		[2] ALICE: <i>Nature Physics 13</i> , 535- 539 (2017)
licity		[3]ALICE: <i>Phys. Lett. B</i> 728 (2014) 25-38
		[4]ALICE: <i>Eur. Phys. J. C 80</i> (2020) 693
,		

• The strange hadron-to-pion ratio as a function of

charge-particle multiplicity increases.

XXV DAE-BERNS High Energy Physics Symposium

DECEMBER 12TH TO 16TH

