A **simultaneous** measurement of the top quark mass and decay width with single top quark events at CMS

Mintu Kumar (TIFR Mumbai) On the behalf of the CMS Collaboration

DAE HEP 2022

Precision measurement in single top topologies

Top quark production at LHC

- Top quark is the heaviest particle of the SM
- Largest Yukawa coupling with the Higgs boson
- Major impact on the stability of EWK vacuum

13 TeV center mass energy → top quark factory LHC
 Precision lab for measuring the top quark properties such as its mass (m,)

DAE HEP 2022

Precision measurement in single top topologies

Analysis strategy

• Estimate $\textbf{p}_{z,\nu}$ from energy-momentum conservation using the \textbf{m}_W constraint

$$m_W^2 = \left(E_\ell^2 + \sqrt{\not p_T^2 + p_{z,\nu}^2}\right)^2 - \left(\vec{p}_{T,\ell} + \vec{p}_T\right)^2 - \left(p_{z,\ell} + p_{z,\nu}\right)^2$$

- Reconstruct the W boson from charged lepton and neutrino
- Reconstruct the top quark from b-tagged jet and W boson
- Use a boosted decision tree (BDT) to separate signal from backgrounds
- Optimize the criterion on the BDT response such that the expected uncertainty on top quark mass is minimum
- Fit the top quark mass distribution to get the measured top quark mass

BDT discriminator and cut optimization

DAE HEP 2022

Extraction of m_t

- estimated QCD bkg.
- Simultaneous ML fit with the $\zeta = ln(m_t / 1 \text{ GeV})$ distributions in μ and e final states

$$\mathcal{L}_{\text{tot}} = \prod_{l} \mathcal{L}_{l} \quad \text{with} \quad \mathcal{L}_{l} = \prod_{i, j} \mathcal{P}[N_{i, l}^{\text{obs}} \mid F_{l}(\zeta; \zeta_{0}, f_{j})] \Theta(f_{j}), \mathbf{\hat{\boldsymbol{\mathsf{u}}}}$$

- . $\succ \zeta_0$: POI, represents the peak position of the combined *t*-channel and Top templates
- . \succ m_{Fit} extracted from exp(ζ_0); calibrated against true m_t
- F_{t-ch} = <u>asymmetric Gaussian</u> core + Landau tail
- ≻ F_{Top} = <u>Crystal ball</u>
- ≻ F_{EWK} =<u>Novosibirsk</u>
- ζ_0 , f_{t-ch} , f_{Top} , and f_{EWK} are allowed to float in the fit
- Constraint on the rates added as nuisance parameters to the fit $f_{t-ch} \rightarrow 15\%, \ f_{Top} \rightarrow 6\%$ and $f_{EWK} \rightarrow 10\%$

Fit model is validated in control region: -0.2 < BDT response < 0.8

DAE HEP 2022

DAE HEP 2022

Precision measurement in single top topologies

- Simultaneous measurement of m_{top} and Γ_{top} using full Run-2 data (~ 137 fb-1) and latest recommended MC samples ➡ Strategy: Fit with parametric shapes (<u>JHEP 12 (2021) 161</u>)
- Improvements:
 - Use the Deepjet discriminant to tag b jets
 - Determination of QCD bkg. rate simultaneously in both lepton flavours
 - Estimation of other bkg. contributions from the dedicated control regions
 - Multi-classification with DNN to separate signal from combinatorial bkgs.
 - Usage of Higgs combine tool → shape systematics as a nuisance parameters in the fit to obtain a
 precise width measurement

Current status

DAE HEP 2022

Precision measurement in single top topologies

Summary and outlook

- Top quark mass measured with data collected during 2016 is already published <u>JHEP 12 (2021) 161</u>
- We have achieved a sub-GeV precision for the first time in single top topologies
- Simultaneous mass and width extraction is aimed based on the full Run-2 data
- Targeting for **summer conferences in 2023** for a public result

Back up

DNN details

- Input variables to the network
 - 4-momenta of the lepton, b jet, light jet, and the reco. neutrino
 - First Fox-Wolfram moments
 - deepJet scores of b-jet and light jet

- The events are distinguished into 6 output classes
 - *t*-ch. single top correct assignment
 - *t*-ch. single top incorrect assignment
 - Top (tt⁻ + tW + *s*-ch.) bkg. correct assignment
 - Top bkg. incorrect assignment
 - Electroweak bkg. (V+jets and VV)
 - QCD

QCD estimation

- QCD has large cross section but a very low selection efficiency
- Require high stat. MC \Rightarrow computationally intensive
 - Obtain SB in data by investing iso. (id)
 ⇒ derive QCD template using SB data
- ML fit in signal region to estimate QCD bkg. contribution :

 $F(m_T^{W}) = N_{QCD} \times Q(m_T^{W}) + N_{non-QCD} \times W(m_T^{W})$

- Data-driven QCD shape and postfit QCD yield m_T^W > 50 GeV considered for further analysis for QCD
- 50% uncertainty (shape+rate) on the estimated QCD bkg. propagated as systematic

13

Analysis strategy

 Estimate p_{z,v} from energy-momentum conservation using the m_w (= 80.4 GeV) constraint

$$m_W^2 = \left(E_\ell^2 + \sqrt{\not p_T^2 + p_{z,\nu}^2}\right)^2 - \left(\vec{p}_{T,\ell} + \vec{p}_T\right)^2 - \left(p_{z,\ell} + p_{z,\nu}\right)^2$$

- Leads to a quadratic solution for neutrino p₇:
 - For real case (~65%), choose the one with lowest $|p_z|$ (accuracy ~64%)
 - For imaginary case (~35%)
 - rightarrow make the radicand zero \Rightarrow Quadratic equation in p_{xy} and p_{yy}
 - so that neutrino $p_{x,v}$ has lowest $\Delta \phi$ with missing p_T
- Reconstruct the W boson from charged lepton and neutrino
- Reconstruct top quark from b-tagged jet and W boson

DAE HEP 2022

Mass linearity and calibration

m, hypothesis considered simultaneously for *t* - ch. and tt⁻ using dedicated MC samples

15

Mass linearity and calibration

m, hypothesis considered simultaneously for *t* - ch. and tt⁻ using dedicated MC samples

• Calibration performed separately for the l^+ and l^- case also

Mass calibration is done using the relationship $\Delta m_{offset} = |m_{True} - m_{Fit}|$ vs. m_{Fit}

16

BDT variables (TOP-19-009)

Variable	Rank µ	Rank e	Description
$\Delta R_{\rm bj'}$	1	1	Angular separation in $\eta - \phi$ space between the b-tagged and untagged jets
light jet $ \eta $	2	2	Absolute pseudorapidity of the untagged jet
$m_{\rm bj'}$	3	3	Invariant mass of the system comprising of the b-tagged and untagged jets
$\cos \theta^*$	4	4	Cosine of the angle between the lepton and untagged jet in the rest frame of the top quark
$m_T^W (\geq 50 \text{ GeV})$	5	5	Transverse W boson mass as described in Eq. (6)
FW1	_	6	First-order Fox-Wolfram moment [46, 47]
$ \Delta \eta_{\ell \mathbf{b}} $	6	7	Absolute pseudorapidity difference between the lepton and b-tagged jet
$p_{\mathrm{T}}^{\mathrm{b}}+p_{\mathrm{T}}^{\mathrm{j}'}$	7	8	Scalar sum of $p_{\rm T}$ of the b-tagged and untagged jets
$ \eta_{\ell} $	8	i — 1	Absolute pseudorapidity of the lepton (muon)

Lepton charge - dependent fits

BDT performance

- One BDT is trained per channel (electron/Muon)
- At BDT response = 0.8
 - Signal purity ≈ 60%

Systematics

Source		$\delta \mathrm{m}_{\ell^\pm}$	δm_{ℓ^+}	δm_{ℓ^-}	_				
Statistical + profiled systematic		±0.32	±0.37	± 0.58					
· · ·	Correlation Group Intercalibration	±0.09	±0.07	±0.12		ISR	± 0.01	± 0.01	$< \pm 0.01$
JES	Correlation Group MPFInSitu	± 0.02	± 0.02	± 0.01	Signal modeling	FSR	± 0.28	± 0.31	± 0.20
	Correlation Group Uncorrelated	±0.39	± 0.17	±0.83		$\mu_{\rm R}/\mu_{\rm F}$ scale	± 0.09	± 0.13	± 0.03
	total (quadrature sum) ± 0.40 ± 0.18 ± 0.84			$PDF + \alpha_S$	± 0.06	± 0.06	± 0.07		
JER		$< \pm 0.01$	$< \pm 0.01$	$< \pm 0.01$	=	total (quadrature sum)	± 0.30	± 0.34	±0.21
Unclustered energy		$< \pm 0.01$	$< \pm 0.01$	$< \pm 0.01$	-	ISR	$\pm 0.11(0.008)$	$\pm 0.02(0.001)$	$\pm 0.22(0.016)$
Muon efficiencies		$< \pm 0.01$	$< \pm 0.01$	$< \pm 0.01$		FSR	$\pm 0.10(0.007)$	$\pm 0.14(0.010)$	$\pm 0.40(0.028)$
Electron efficiencies		± 0.01	± 0.01	± 0.01		ME/PS matching scale	+0.10(0.007)	+0.10(0.006)	+0.10(0.008)
Pileup		± 0.14	± 0.04	± 0.34		$\frac{1}{1}$	$\pm 0.10(0.007)$	$\pm 0.10(0.000)$	+0.01
b tagging		± 0.20	± 0.18	± 0.22	tī modeling	$\mu_{\rm R}/\mu_{\rm F}$ scale	± 0.00	± 0.00	± 0.01
QCD multijet background		± 0.02	± 0.01	± 0.02		$FDF + a_S$	$\leq \pm 0.01$	$\leq \pm 0.01$	$\leq \pm 0.01$
Offset correction		± 0.11	± 0.13	± 0.20		lop $p_{\rm T}$ -reweighting	-0.04	-0.08	-0.04
Luminosity		$< \pm 0.01$	$<\pm 0.01$	± 0.01	_	Underlying event	$\pm 0.07 (0.005)$	$\pm 0.04(0.003)$	$\pm 0.17 (0.012)$
CR model and ERD		$\pm 0.24(0.017)$	$\pm 0.39(0.027)$	$\pm 0.68 (0.048)$		total (quadrature sum)	± 0.20	+0.18 -0.20	± 0.50
	gluon	+0.52	+0.75	-0.03	-	signal shape	± 0.05	± 0.03	± 0.04
Flavor-dependent JES	light quark (uds)	-0.18	+0.18 -0.23			Top bkg, shape	± 0.07	± 0.04	± 0.05
	charm	+0.01	+0.08	+0.11	Signal and background shape	FWK bkg_shape	+0.03	+0.01	+0.02
	bottom	-0.48	-0.29	-0.31		total (quadrature sum)	+0.00	+0.05	+0.07
	total (linear sum)	-0.13	+0.72	-0.46		total (quadrature suit)	±0.09	±0.05	±0.07
	b frag. Bowler-Lund	± 0.03	± 0.06	± 0.08	Total systematic		-0.71	-0.65	-1.39
b quark hadronization model -	b frag. Peterson	+0.14	+0.11	+0.19	Grand total		+0.76	+1.04	+1.44 -1.51
	semileptonic B decays	± 0.18	± 0.17	±0.19			0.77	0.75	1.51
	total (quadrature sum)	+0.23	+0.21 -0.18	+0.28					

CMS-PAS-TOP-19-009

Systematics charge dependent(TOP-19-009)

- Unc. other than Signal and Bkg normalization are externalized
- 2.5% uncertainty in luminosity propagated
- 4.6% uncertainty in $\sigma_{\text{min bias}} = 69.2 \text{ mb}$ propagated as unc. due to pileup
- Alternate CR tune models and top mass hypothesis considered for t-ch and ttbar simultaneously
- Unc. due to QCD scale, PDF, ISR, FSR effects are calculated using reweighted templates

Source	δm _{inclu.} (GeV)		
JES	± 0.40		
Signal modeling	± 0.30		
CR model	± 0.24		
b-quark hadronization model	+0.23 -0.18		
Total syst.	+0.69 -0.71		
Stat. + Rate	±0.32		
Grand total	±0.77		

Source	δm _{ι+} (GeV)
Flavor-dependent JES	+0.72
CR model	± 0.39
Signal modeling	± 0.34
b-quark hadronization model	+0.21 -0.18
Total syst	+0.97
Total Syst.	-0.65
Stat. + Rate	± 0.37
Grand total	± 0.75

Source	δm _{ı.} (GeV)
JES	± 0.84
CR model	± 0.68
t ⁻ t modeling	± 0.50
Flavor-depend ent JES	- 0.46
Total syst.	+1.32 -1.39
Stat. + Rate	±0.58
Grand total	±1.51

DeepJet efficiency

