Search for the EW production of a VW pair plus two jets in the semi-leptonic $\ell v j j$ channel with full Run-II data

Asar Ahmed

Prof. Md. Naimuddin

Department of Physics & Astrophysics University of Delhi, Delhi, India (110007)

XXV DAE-BRNS High Energy Physics Symposium IISER Mohali, Dec-2022

Vector Boson Scattering

So Far

- Tested and measured SM corss-sections over 10 orders of magnitude
- Discovered Higgs
- Still need to understand the mechanism behind the Electroweak Symmetry Breaking Mechanism (EWSB)

VBS Diagram

- Without Higgs, Vector Boson Scattering (VBS) cross-section violate unitarity at the TeV scale
- VBS: the radiated gauge bosons by quarks from the two protons and interact with each other and decay afterwards
- VBS measurement gives way to probe the EWSB
- □ Rare process in SM, requires good discrimination against enormous backgrounds
 - With advancement in ML techniques, provide way to improve signal discrimination
- First evidence of VBS in WV semi-leptonic channel at LHC.

Asar Ahmed (DU)

DAE-BRNS 2022

8.3%

Signal signature

WV scattering is a EWK process with 6 fermions in the final state where V (W/Z) boson decays hadronically and the other W leptonically

- **I** High pseudo-rapidity gap between VBS jets: $\Delta \eta_{jj} > 2.5$
- □ Larger di-jet invariant mass: $M_{VBS-jj} > 500 \ GeV$

Asar Ahmed (DU)

DAE-BRNS 2022

Objects and Samples

	2016	2017/2018		
Electrons	EG POG mva_90p_Iso2016 ID (90% eff) + isolation	EG POG Fall17V1Iso_WP90 ID (90% eff) + isolation		
Muons	Muon POG Tight selection + extra $d_z d_{xy}$ cuts	Muon POG Tight selection + extra $d_z d_{xy}$ cuts		
Jets	AK4 Jets not overlapping with e/μ within ΔR of 0.4	AK4 Jets not overlapping with e/μ within ΔR of 0.4		
	+ Tight Jet Id + Loose PU Jet ID $p_T < 50 \text{ GeV}$	+ Tight Jet Id + Loose PU Jet ID $p_T < 50 \text{ GeV}$		
FatJets	AK8PF jets $ \eta < 2.4$, $p_T > 200$ GeV, $\Delta R > 0.8$ from e/μ	AK8PF jets $ \eta $; 2.4, $p_T > 200$ GeV, $\Delta R > 0.8$ from e/μ		
	+ Tight Jet Id + Loose PU Jet ID $p_T < 50 \text{ GeV}$	+ Tight Jet Id + Loose PU Jet ID $p_T < 50 \text{ GeV}$		
		(2017-only + Tight PU jet ID for η region $ 2.5 - 3.2 $)		
b-tag	BTV POG deepCSV: tight WP for b-tagging	BTV POG deepCSV: tight WP for b-tagging		
	loose WP for b-veto	loose WP for b-veto		
MET	PuppiMET	PuppiMET		

Signal and Background samples

- □ WVJJ (EWK) : Electroweak production of WVJJ
- □ WVJJ (QCD initiated): Irreducible background for analysis
- W+Jets: Most dominating background
- □ Drell-Yan: Z/γ decays to $\ell^+\ell^-$ and we mis-measure one lepton because of acceptance or ineffciency effects, gives missing energy
- □ tt Jets: Top quark always decays to one b-quark and one W boson. So, $t\bar{t} \rightarrow bWbW \rightarrow b\ell\nu\ell\nu$, if we mis-measure one lepton and b quark form jets
- **Single top production: Here** $t \rightarrow bW \rightarrow b\ell\nu$, and 3 jets is reconstructed

Asar Ahmed (DU)

DAE-BRNS 2022

Analysis phase spaces

Asar Ahmed (DU)

DAE-BRNS 2022

Deep Neural Network (DNN) for signal extraction

Approach

- All Backgrounds vs Signal (events weighted by XS and SFs)
- Training performed on events in signal region
- □ Trained 2 different models:
 - for boosted and resolved categories
 - joining all the years datasets
- Carefully checked and avoided overtraining

Resolved

- DNN fully connected (64-64-64-64 nodes)
- 16 inputs variables
- Regularization: Batch normalization and L2 norm weights normalization
- 1.7 M background, 220k signal samples

Boosted

- DNN fully connected (64-32-32-32 nodes)
- 13 inputs variables
- Regularization: Batch normalization and L2 norm weights normalization
- **1** 416k background, 50k signal samples

41.7

Deep Neural Network (DNN) for signal extraction

DNN training

- □ Dataset: 80% training, 20% validation
- Train with Adam minimizer and decaying learning rate, until full convergence
- Carefully checked and avoided overtraining

50%

Background estimation

- QCD multijet background: Estimated using data-driven method
 - Tight/Loose efficiency for fake (prompt) lepton measured in QCD (Drell-Yan) enriched data sample
 - Construct relation between # prompt/ fake leptons and # passing/failing tight ID
 - Weight events in Loose data control region by (probability to have at least one non-prompt lepton) x (probability to still pass tight selection)

□ W+Jets

- Mismodelling of the jet p_T spectrum for W+many-jets sample → data-driven differential corrections
- W+Jets contribution taken from MC but corrected in a data driven way
- Fit their normalization in the global fit in the W+jets CR
- After the data driven estimation → Predictions and data agree within uncertainties

Top background: Shape from MC, normalisation extracted from top CR in the final to fit the data

Background estimation

Control Regions

Top CR

Asar Ahmed (DU)

DAE-BRNS 2022

Signal Region

Signal region distribution for one of highest ranked variable, di-jet invariant mass of VBF jets and DNN score, for both resolved and boosted case

Asar Ahmed (DU)

DAE-BRNS 2022

December 12, 2022

83.3%

Systematic Uncertainty

- Systematic uncertainty can affect the shape and normalisation of the DNN distribution
- Largest impact is from statistics
 - Expected as VBS signal is a rare process
- Experimental uncertainty is mainly dominated by b-tagging and jet energy scale/resolution

Uncertainty source	$\Delta \mu_{\rm EW}$
Statistical	0.12
Limited sample size	0.10
Normalization of backgrounds	0.08
Experimental	
b-tagging	0.05
Jet energy scale and resolution	0.04
Integrated luminosity	0.01
Lepton identification	0.01
Boosted V boson identification	0.01
Total	0.06
Theory	
Signal modeling	0.09
Background modeling	0.08
Total	0.12
Total	0.22

Summary and Results

- □ Fit DNN shape in the signal regions
- Fit W+jets subcategories normalizations in W+jets control regions
- Fit only normalization in top-quark control regions
- Results
 - SM EW signal strength: $\mu_{EW} = \sigma^{obs} / \sigma^{SM} = 0.85^{+0.23}_{-0.21}$ Signal significance of **4.4** σ (5.1 σ expected)
 - Observed cross-section of 1.9^{+0.53}_{-0.46} pb (2.23^{+0.08}_{-0.11} pb expected)

Considering EW and QCD WV production as signal, the signal strength:

$$\mu_{EW+QCD} = \sigma^{obs} / \sigma^{SM} = 0.97 \pm 0.06 (stat)^{+0.19}_{-0.21} (syst) = 0.97^{+0.20}_{-0.22}$$

• Measured cross-section: $16.4^{+3.5}_{-2.8}$ pb ($16.9^{+2.9}_{-2.1}$ pb expected)

Simultaneous 2D fit of the EW and QCD WV signal strengths

The results on the first evidence of VBS in WV channel is published in PLB

Thank you

Higgs diagrams

• Back

Background Samples (1/2)

process	year	dataset name	
Walate I O	2016	WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	
w+jets LO	2017,2018	WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8	
	2016	WJetsToLNu_HT*_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	
W+Jets LO HT bins	2017,2018	WJetsToLNu_HTTuneCP5_13TeV-madgraphMLM-pythia8	
		* HT bins: 70, 100, 200, 400, 600, 800, 1200, 2500, +∞ GeV	
		DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8	
	2016	DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8	
		DYJetsToLL_M-5to50_HT+_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	
		HTbins: 70,100,200,400,600, +∞ GeV	
		DYJetsToLL_M-50_HT*_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	
		HT bins: 70, 100, 200, 400, 600, 800, 1200, 2500, +∞ GeV	
		DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8	
		DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8	
		DYJetsToLL M-4to50_HT+_TuneCP5_13TeV-madgraphMLM-pythia8	
DY+Jets	2017	HT bins: 100, 200, 400, 600, +∞ GeV	
		DYJetsToLL_M-50_HT+_TuneCP5_13TeV-madgraphMLM-pythia8	
		HT bins: 100, 200, 400, 600, 800, 1200, 2500, +∞ GeV	
		DYJetsToLL M-50 TuneCP5_13TeV-amcatnloFXFX-ovthia8	
		DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8	
	2018	DYJetsToLL M-4to50 HT. TuneCP5 13TeV-madgraphMLM-pythia8	
		HT bins: 100, 200, 400, 600, +∞ GeV	
		DYJetsToLL M-50 HT+ TuneCP5_13TeV-madgraphMLM-pythia8	
		HT bins: 70, 100, 200, 400, 600, 800, 1200, 2500, +∞ GeV	
	2016	TITe2L2Nu TuneCUETP8M2 ttHtranche3 13TeV-powheg-pythia8	
tt .	2017, 2018	TTTo 2L2Nu_TuneCP5_13TeV-powheg-pythia8	
Complementary 7	2016	TTToSemilepton_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8	
Semileptonic fr	2017, 2018	TTTo SemiLept onic_TuneCP5_13TeV-powheg-pythia8	
Circula trans a deserval	2016	ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1	
Single top s-channel	2017, 2018	ST_s-channel_4f_leptonDecays_TuneCP5_13TeV-amcatnlo-pythia8	
	2016	ST_t-channel_(anti)top_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1	
Single top t-channel	2017	ST_t-channel_(anti)top_4f_inclusiveDecays_TuneCP5_13TeV-powhegV2-madspin-pythia8	
	2018	ST_t-channel_(anti)top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8	
Ci	2016	ST_tW_(anti)top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1	
Single top tw	2017, 2018	ST_tW_(anti)top_5f_inclusiveDecays_TuneCP5_13TeV-powheq-pythia8	
T 7 method	2016	ttZJets_13TeV_madgraphMLM-pythia8	
tt Z production	2017, 2018	ttZJets_TuneCP5_13TeV_madgraphMLM_pythia8	
T 147 mention	2016	TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8	
n w production	2017, 2018	ttWJets_TuneCP5_13TeV_madgraphMLM_pythia8	

Background Samples (2/2)

process	year	dataset name	
QCD-VV		WminusTo2JZTo2LJJ_QCD_LO_SM_*	
	2016: TuneCl	JETP8M1 WminusToLNuWminusTo2JJJ_QCD_LO_SM_*	
		WminusToLNuZTo2JJJ_QCD_LO_SM_+	
		WplusTo2JWminusToLNuJJ_QCD_LO_SM_*	
	2017: TuneCI	5 WplusTo2JZTo2LJJ_QCD_LO_SM_*	
		WplusToLNuWminusTo2JJJ_QCD_LO_SM_+	
		WplusToLNuWplusTo2JJJ_QCD_LO_SM_*	
	2018: TuneCI	5 WplusToLNuZTo2JJJ_QCD_LO_SM_+	
		ZTo2LZTo2JJJ_QCD_LO_SM_*	
		* = MJJ100PTJ10_Tune*_13TeV-madgraph-pythia8	
vvv	2016: TuneCu	JEFP8IM1 WWW_4F_Tune+_13TeV-amcatnlo-pythia8	
	2017: TuneCl	5 WWZ_Tune*_13TeV-amcatnio-pythia8	
	2018: TuneCi	5 WZZ_Tune+_13TeV-amcatnio-pythia8	
		222_TUNE*_13TeV-amcatnio-pytnia8	
	2016	WG TOLNUG_TUNECUETPSIMI_13TeV-madgraphmLM-pythias	
	2016	WTTo21Nu mllmin01 12TeV-newbeg-puthia9	
Vg + VgS	i	W2TOINUG TUNCDS 13TeV-powieg-pytriad	
	2017.2018	2GToLLG 01.1 Sf JuneCPS 13TeV-amcathloFXFX-ovthia8	
	2017,2010	WZTO3LNU mllmin01 NNPDF31 TubeCP5 13TeV powbeg pythia8	
-		EWK LNULI MLI-120 13TeV-madgraph-herwignon	
	2016	EWK LLJJ MLL-50 MJJ-120 TuneEEC5 13TeV-madgraph-herwigpp co	rected
VBF-V	2017 2010	EWK LNuJJ MJJ-120 private production with same conf as EWK LLJJ	
	2017, 2018	EWK_LLJJ_MLL-50_MJJ-120_TuneCH3_PSweights_13TeV-madgraph-he	rwig7_corrected
ggWW	2016, 2017, 20	018 GluGluWWToLNuQQ_TuneCP5_13TeV_aMCatNLO_pythia8	
Process		Dataset name	cross section (pb)
WpTo2LW	mToLNu	/WplusTo2IWminusToLNuII_dipoleRecoil_EWK_LO_SM*	0.9107
NpToI Nu	WmTo2I	/WplusToLNuWminusTo2III dipoleRecoil FWK LO SM*	0.9114
VmToI Nu	ZTo2I	/WminusToLNuZTo2III dipoleRecoil FWK LO SM*	0 1000
MpToI Nu	ZTo2I	/WplusToLNuZTo2III dipoloPosoil EWK LO SM*	0.1825
WploLNu_Zlo2J /Wplu		Windows To 2017 To 2019 dipole Recall EWK LO SM	0.0208
Almo To L NI	Mar T- OI	Winding To Live To 201 dipole Record Low Actor Shi	0.0298
VITIOLINU		/ Wminus IoLINUW minus Io2jjj_dipolekecoli_EWK_LO_SM	0.0326
wp102J_Z	IO2L	/Wplus1o2JZ1o2LJJ_dipoleRecoil_EWK_LO_SM*	0.0540
WpToLNu_WpTo2J /Wplus		/WplusIoLNuWplusIo2JJJ_dipoleRecoil_EWK_LO_SM*	0.0879
ZTo2L_ZTo2J /ZTo2L		/ZTo2LZTo2JJJ_dipoleRecoil_EWK_LO_SM	0.0159
2016: *MJJ1	00PTJ10_Tur	heCUETP8M1_13TeV-madgraph-pythia8/RunIISummer16NanoAOD	0v7-
OMORION	117_94X_m	cRun2_asymptotic_v3-v1/NANOAODSIM	
2017: *MJJ1	00PTJ10_Tur	neCP5_13TeV-madgraph-pythia8/RunIIFall17NanoAODv7-	
PU2017_12	Apr2018_N	ano02Apr2020_102X_mc2017_realistic_v7-v1/NANOAODSIM	
2018:MJJ100)PTJ10_Tune	CP5_13TeV-madgraph-pythia8/RunIIAutumn18	
NanoAOD	v7-Nano02	Apr2020_102X_upgrade2018realistic_v20-v1/NANOAODSIM	c 🦯
			37

Asar Ahmed (DU)

DAE-BRNS 2022

Correction factors

Normalization correction factors in the external and internal control regions are compatible

Asar Ahmed (DU)

DAE-BRNS 2022

Post Fit distributions

Asar Ahmed (DU)

DAE-BRNS 2022

W had reco signal muon

Asar Ahmed (DU)

DAE-BRNS 2022

Deep Neural Network (DNN) for signal extraction

Asar Ahmed (DU)

DAE-BRNS 2022

DNN input variables

Variable	Resolved	Boosted			High
Lepton pseudorapidity	√	√	mjj_vbs		
Lepton transverse momentum	\checkmark	√	Zlep		
Zeppenfeld variable for the lepton	\checkmark	√	vjet_0_qgl_res		
Number of jets with $p_{\rm T} > 30$ GeV	\checkmark	\checkmark	deltaeta_vbs		
VBS leading tag-jet $p_{\rm T}$	-	\checkmark	vjet_1_qgl_res		
VBS trailing tag-jet $p_{\rm T}$	\checkmark	√	vbs_1_pt		
Pseudorapidity interval between VBS tag-jets	\checkmark	\checkmark	nJets30		
Quark Gluon discriminator of the highest p_T jet of the VBS tag-jets	\checkmark	\checkmark	deltaeta_vjet		
Azimuthal angle distance between VBS tag-jets	\checkmark	\checkmark	vbs_u_qgi_res		
Invariant mass of the VBS tag-jets pair	\checkmark	\checkmark	mii viet		1
$p_{\rm T}$ of jets from V_{had}	\checkmark	-	viet 1 pt		
Pseudorapidity difference between V _{had} jets	\checkmark	-	Lepton eta		
Quark Gluon discriminator of the V _{had} jets	\checkmark	-	vjet 0 pt		
$V_{had} p_{\rm T}$	-	√	Centr_ww		
Invariant mass of the V _{had}	\checkmark	\checkmark	Lepton_pt	bkg, like 🔸 sig, like	
Zeppenfeld variable for the V _{had}	-	\checkmark			Low
V _{had} centrality	-	\checkmark		SHAP value (impact on model output)	