

Constraining New Physics with Possible Dark Matter Signatures from the Study of Low Energy Processes

Lipika Kolay

IIT Guwahati

XXV DAE-BRNS High Energy Physics Symposium 2022

December 13, 2022

Lipika Kolay DAE-HEP 2022

- Simplified Model
- Analysis and Result : Highmass Region
 - Constraints from flavor physics
 - Dark matter phenomenology
- Analysis and Result : Lowmass Region
 - Constraints from flavor physics
 - Dark matter phenomenology

• • = • • = •

Why BSM?

Standard Model prediction is validated to high precision, however

Matter-Anti matter asymmetry

•
$$\eta = \frac{n_B - \bar{n}_B}{\gamma} \sim 10^{-9}$$

- 2 Neutrino oscillation
 - Non-zero mass of neutron
- O Dark Matter
 - $\sim 25\%$ of total energy budget is dark matter
 - Observational Evidances: Galaxy Rotation Curve, Gravitational lensing, CMBR
 - WIMP, SIMP, FIMP
- and many more.....

(日)

The Simplified Model

$$egin{split} \mathcal{L}=&\mathcal{L}_{SM}+rac{1}{2}ar{\chi}(i\partial\!\!\!/-m_\chi)\chi+rac{1}{2}\partial_\mu S\partial^\mu S-ar{\chi}(c_{s\chi}+ic_{p\chi}\gamma_5)\chi S\ &-ar{\psi}(c_{s\psi}+ic_{p\psi}\gamma_5)\psi S-V(S,H) \end{split}$$

Where, $V(S,H) = \mu_S^2 S^2 + \frac{\lambda_4}{4!} S^4 + \frac{\lambda_3}{3!} S^3 + \lambda_1 S H^{\dagger} H + \lambda_2 S^2 H^{\dagger} H$

Under $\mathcal{Z}_2 :: \chi \to -\chi$

High mass region $:M_S (\ge 100) \text{GeV}$

- Neutral meson mixing
- Anomalous magnetic moment
- $t \to bW_{\mu}$ decay
- Rare decays of mesons
- Global fit of $b \to s\ell\ell$ observables

Low mass region $:M_S (\leq 10)$ GeV

- Neutral meson mixing
- $t \to bW_{\mu}$ decay
- Rare decay of mesons
- Invisible decay
- Fix Target Experiment

Lipika Kolay DAE-HEP 2022

4/31

Contribution to FCNC vertex

• b - s - S will be modified as:

• Yukawa coupling of $\mathbf{S} \cdot \boldsymbol{\psi} \cdot \boldsymbol{\psi}$ re-scaled as:

$$\begin{split} \bar{\psi}(c_{s\psi} + ic_{p\psi}\gamma_5)\psi S \\ &= \bar{\psi}\bigg(\sqrt{2}m_{\psi}\frac{g_s}{v} + i\sqrt{2}m_{\psi}\frac{g_s}{v}\gamma_5\bigg)\psi S \\ &= m_{\psi}\bar{\psi}(\mathbf{c_s} + i\mathbf{c_p}\gamma_5)\psi S \end{split}$$
(1)

• Loop diagram contribution:

$$\mathcal{L}_{eff}^{bsS} = C_1[\bar{b}(m_b P_L + m_s P_R)s] + C_2[\bar{b}(m_b P_L - m_s P_R)s]$$

- Scalar and pseudoscalar operators
- $C_1, C_2 \Rightarrow \text{loop function} \Rightarrow \text{have divergences}$.

b-s-S vertex correction

• Divergences can be absorbed by RGE of coupling (in LLA):

$$C_1(\Lambda) = \frac{1}{2}(I_1 + I_2) + \frac{m_t^2}{m_w^2} 3c_s \log \frac{\Lambda^2}{m_t^2}.$$
 (2)

$$C_2(\Lambda) = \frac{1}{2}(I_1 - I_2) + \frac{m_t^2}{m_w^2}(-ic_p)\log\frac{\Lambda^2}{m_t^2}.$$
 (3)

 $I_1, I_2 \rightarrow$ Finite part of loop integration. $\Lambda \rightarrow$ cutoff scale.

- Studied for : $\Lambda = 2$ TeV and $\Lambda = 1$ TeV.
- We also have b d S, s d S FCNC vertices in this model.

JHEP1503(2015)171

PhysRevD 48,2182

• High mass region of M_S .

Lipika Kolay DAE-HEP 2022

Meson Mixing

Msss difference(in SM):

hep-ex/0103016

$$\Delta M_d = \frac{|\mathcal{M}|}{m_B} = \frac{G_F^2}{6\pi^2} m_{B_d} f_{B_d}^2 B_{B_d} \eta_B m_w^2 |V_{td}^* V_{tb}|^2 f(\frac{m_t^2}{m_w^2})$$

 $f_{B_d} \to {\rm decay}\ {\rm constant},\ B_{B_d} \to {\rm Bag}\ {\rm parameter},\ f(\frac{m_t^2}{m_w^2}) \to {\rm loop}\ {\rm factor}.$

Mixing Observable:

$$\Delta M_{tot} = \Delta M_{SM} + \Delta M_{NP}$$

$$\Delta M_{tot} = \Delta M_{SM}(1 + \Delta)$$

 $\begin{array}{ll} B_s^0 - \bar{B}_s^0 \mbox{ Mixing:} & \mbox{JHEP12}(2019)009 \\ 1\sigma \mbox{ error of parameters} \approx 7.5\% \mbox{ NP contribution.} \\ 2\sigma \mbox{ error of parameters} \approx 15\% \mbox{ NP contribution.} \end{array}$

8/31

イロト イヨト イヨト イヨト

三 うくで

Meson Mixing

- Upto 10% of NP is allowed.
- $\Lambda = 2TeV, \Lambda = 1TeV.$

- Anomalous Magnetic Moment of Muon
- Anomalous Magnetic Moment of electron

Lipika Kolay

DAE-HEP 2022

FCCC Process: $t \rightarrow bW$ decay

• The general Lagrangian for this decay can be given by :

$$\mathcal{L}_{tbW} = -\frac{g}{\sqrt{2}}\bar{b}\gamma_{\mu}(V_LP_L + V_RP_R)tW_{\mu} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma_{\mu\nu}q_{\nu}}{m_W}(g_LP_L + g_RP_R)tW_{\mu} + h.c$$

Phys.Rev.D 43 (1991) 3759-3762

Lipika Kolay

DAE-HEP 2022

FCNC : Rare and Semileptonic decays

- $K_L \to \mu^+ \mu^-, K_S \to \mu^+ \mu^-, B_0 \to \mu^+ \mu^-$ and $B_s^0 \to \mu^+ \mu^-$ decays are considered.
 - $\Lambda = 2 \text{ TeV}$

 $\Lambda = 1 \, \mathrm{TeV}$

$b \to s \ell^+ \ell^-$ from Global Fit

- Performed a global fit of the model parameters taking all the $b \to s\ell\ell$ observables into account.
- Branching Ratios, Isospin asymmetry, LFUV observables, Angular observables.

Λ[TeV]	M _S [GeV]	c₅[GeV ^{−1}]	c _p [GeV ⁻¹]
1	250	-0.00408±0.063692	-0.002321±0.477402
1	500	-0.225392±0.127408	0.004642±0.954786
1	800	-0.360628±0.203848	0.007428±1.52766
2	250	0.095424±0.0539296	-0.001965±0.404235
2	500	0.190849±0.107867	-0.003931±0.808468
2	1000	-0.381697±0.215758	0.007862±1.616922
P-value→5.19%			

DAE-HEP 2022

4 ロト 4 部 ト 4 王 ト 4 王 ト 2 の Q (*) 22 12 / 31 ▶ Taken all the constraints into account

• Most constrained from $t \to bW_{\mu}$ decay

Lipika Kolay DAE-HEP 2022

13/31

) Q (

• Low mass region of M_S .

Lipika Kolay DAE-HEP 2022

크

< ロ > < (目) < (目) > (目) < (日) < (日) > (日) < (日) > (日) < (1) > (1) < (1) > (1) < (1) > (1) < (1) > (1) < (1) > (1) < (1) > (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) <

Invisible Decay

- In SM : $B^+ \to K^+ \nu \bar{\nu}, B_0 \to K_L \nu \bar{\nu}, K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}$
- If S doesnot decay to any invisible mode and its life-time is long enough that it will leave the detector without decaying at all.
- $B^+ \to K^+ + S, K^+ \to \pi^+ + S, K_L \to \pi^0 + S$
- $M_S \leq (M_B M_K)$
- $M_S < 2m_\chi$

(日)

Fix Target Experiment

- Constraints are taken from CHARM experiment.
- Production cross. of $S \rightarrow$ number of S produced in the detector solid angle \rightarrow number of decays of S in the detector region N_{det} .
- Constraint is taken as: $N_{det} < 2.3$

JHEP 03 (2015) 171

• Decays into e^+e^- , $\mu^+\mu^-$ and $\gamma\gamma$.

Figure: Excluded region for different combinations of c_s and c_p with choice of hard cutoff scale 2TeV (left) and 1TeV(right).

(日)

All Channels Combined

- All channels considered
- $c_s = c_p$
- Coloured region \rightarrow excluded

Lowmass

Lipika Kolay

DAE-HEP 2022

Dark Matter Phenomenology

High mass region of M_S

- Observed relic satisfied
- Spin independent direct detection crossection (SIDD) bound satisfied[XENON1T]
- $c_{s\chi}, c_{p\chi} < \sqrt{4\pi}$
- $c_s, c_p \rightarrow$ allowed from flavor.

• $\mathbf{DM} + \mathbf{DM} \rightarrow$ Annihilation channels:

Lipika Kolay

DAE-HEP 2022

Dark Matter Phenomenology

Low mass region of M_S

- Relic satisfied
- SIDD bound from XENON1T satisfied
- $c_{s\chi}, c_{p\chi} < \sqrt{4\pi}$
- $c_s, c_p \rightarrow$ allowed from flavor.

- For very small $c_{s\chi}, c_{p\chi}$, t-channel diagram will dominate.
- For higher c_s, c_p both diagrams will contribute.

DAE-HEP 2022

Thank You

Lipika Kolay DAE-HEP 2022

・ロト ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日