Measurement of CP-violating phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ channel (Based on PLB 816 (2021) 136)

Samadhan Kamble

On behalf of the CMS Collaboration

December 12-16, 2022

CPV phase (ϕ_s) in $B_s \to J/\psi q$

ELE NOC

The matter of Antimatter!

- Where did all the antimatter go?
- What caused that tiny imbalance?
- Why matter was preferred?

三日 のへの

The matter of Antimatter!

- Where did all the antimatter go?
- What caused that tiny imbalance?
- Why matter was preferred?

Hunting the Asymmetry!

- Baryon number violation
- Breaking of C & CP symmetries
- 3 1 & 2 to occur in non-thermal equil. phase

► < Ξ ►</p>

EL SQC

CP Violation in the SM

• Source of CPV: the complex phase in CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - (i\eta)) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - (i\eta)) & -A\lambda^2 & 1 \end{pmatrix}$$
Wolfenstein, PRL 51, 1945 (1983)

 \bullet Types of CP violation :

This talk : CP Violation in $B_s \rightarrow J/\psi \phi$ due to interference of direct and indirect CPV!

⇒ ↓ ≡ ↓ ≡ |= √QQ

Outline

Introduction

• ϕ_s in $B_s \rightarrow J/\psi \phi(1020)$

2 Analysis strategy

- The Apparatus
- Event selection & reconstruction
- Flavor tagging

Conclusion

Outline

Introduction

• ϕ_s in $B_s \rightarrow J/\psi \phi(1020)$

2 Analysis strategy

- The Apparatus
- Event selection & reconstruction
- Flavor tagging

토▶ ▲ 토▶ 토|티 - 이익⊙

Introduction

• ϕ_s : CP violating phase arising from the **interference** between **direct** B_s^0 decays to a CP final state and decays through $B_s^0 - \bar{B_s^0}$ mixing to the same final state.

Decay : $\phi_{decay} = \arg(V_{cb}V_{cs}^*)$

 $Mixing: \phi_{mix} = 2arg(V_{tb}V_{ts}^*)$

 $\phi_s = \phi_{mix} - 2\phi_{decay}$

- $\phi_s^{c\bar{c}s}$ is related to CKM elements $(\beta_s \text{ UT} = V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^*)$
- $\phi_s \simeq -2\beta_s = -2\arg(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*})$
- SM Prediction $\phi_s = -36.96^{+0.72}_{-0.84}$ mrad [CKMFitter]

 $\phi_s = \phi_s^{SM} + \phi_s^{NP} \Rightarrow$ Excellent probe for BSM Physics!

ϕ_s in $B_s \rightarrow J/\psi \phi(1020)$

- A 'golden channel' to measure $\phi_s!$
 - $\bullet\,$ Easier to reconstruct with high S/B
 - Excellent triggers sensitive to the final state
- New Physics can alter ϕ_s up to 10% via new particles contributing to the $B_s^0 \bar{B_s^0}$ mixing box [JHEP04(2010)031]
- Same model can be used to measure **several other interesting observables**:

$$\Gamma_s = \frac{\Gamma_L + \Gamma_H}{2}, \ \Delta \Gamma_s = \Gamma_L - \Gamma_H, \ \Delta m_s^2 = (m_H - m_L)^2$$

- Decay width measurement gives interesting test of the theory $(\Delta\Gamma_s=0.091\pm0.013 ps^{-1})$
- State of the art : Results in agreement with SM but poor sensitivity (experimental uncertainty much higher than theoretical one)

Ref: HFLAV PDG

ELE NOR

Introduction • ϕ_s in $B_s \to J/\psi \phi(1020)$

2 Analysis strategy

- The Apparatus
- Event selection & reconstruction
- Flavor tagging

< E ► E E - 9 Q @

$\overline{B^0_s} ightarrow J/\psi \phi(1020) ightarrow \mu^+ \mu^- K^+ K^-$: Analysis strategy

- B_s^0 , $\bar{B_s^0}$ mesons decay to the same final state
- $\bullet\,$ Final state: admixture of CP-even (L=0, 2) and odd (L=1) states
- Need angular analysis to disentangle the two components

Ingredients:

- Angular variables
 - ${m heta}_{m au}$: polar angle of μ^+ in the J/ψ rest frame
 - $\phi_{{m au}}$: azimuthal angle of μ^+ in the J/ψ rest frame
 - $\psi_{\mathcal{T}}$: helicity angle of K^+ in the ϕ rest frame
- Proper decay time of the B_s^0 meson
- Flavor tagging to infer flavor of the B_s^0 meson at production

An unbinned maximum-likelihood fit is performed on data extracting the parameters of interest.

CPV phase (ϕ_s) in $B_s \rightarrow J/\psi_q$

December 12, 2022

ELE NOR

Where to study it?

What do we need to fulfil this program?

- High statistics of B_s^0 mesons
- Good charge track reconstruction
- Triggers sensitive to final states

三日 のへの

Where to study it?

What do we need to fulfil this program?

- High statistics of B_{ϵ}^{0} mesons
- Good charge track reconstruction
- Triggers sensitive to final states

An overview of the CMS detector (CERN TDR)

Ans: The CMS experiment at LHC! [LHCC(2006)001]

- \checkmark high cross section, energy and luminosity
- ✓ robust tracker and muon systems
- flexible trigger system \checkmark

Transverse slice of the CMS detector (Source: Wikimedia)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ December 12, 2022

Event selection and reconstruction

Trigger strategy

- $J/\psi \to \mu^+\mu^-$ candidate plus an additional μ used to tag the $B^0_{\rm s}$ flavour
- allows for an improved tagging efficiency at the cost of a reduced number of selected signal events

I.
$$J/\psi
ightarrow \mu^+\mu^-$$

muon pair emerging from a common displaced vertex with:

•
$$p_T^\mu > 3.5 \, ext{GeV}$$
, $|\eta^\mu| < 2.4$,

•
$$|m_{\mu^+\mu^-} - m_{J/\psi}^{PDG}| < 150 \, {
m MeV}$$

II. $\phi \rightarrow K^+K^-$

kaon pair from a displaced vertex with presections:

•
$$p_T^K > 1.2 \, {
m GeV}, \ |\eta^K| < 2.5$$

•
$$|m_{K^+K^-} - m_{\phi_{1020}}^{PDG}| < 10 \, {
m MeV}$$

III.
$$B^0_s o J/\psi \phi$$

 $\mu^+\mu^-$ and K^+K^- tracks subjected to a combined vertex kinematic fit with:

- displaced secondary decay vertex $p_T^{B_s^0} > 11 \text{ GeV}, \ c\tau^{B_s^0} > 70 \mu m$
- consistent with B_s^0 mass -5240 $< m(K^+K^-\mu^+\mu^-) <$ 5490 MeV

Data

$$\mathcal{L} = 96.4 \textit{fb}^{-1}$$
: p-p collisions at $\sqrt{s} = 13 \textit{TeV}$ collected in 2016 & 17

Source: CMS images gallery

CPV phase (ϕ_s) in $B_s \to J/\psi$

December 12, 2022

▲ 王 ▶ ▲ 王 ⊨ りへ(?)

Flavor tagging

- Identifying flavor of a given (neutral) particle (e.g., distinguish B_s^0 from $\bar{B_s^0}$)
 - greatly improves precision of ϕ_{s}
- OS (opposite-side) muon tagger:
 - Use $b \bar{b}$ correlation \Rightarrow initial B_s^0 flavour
 - Exploit the complementary b-quark decays: $b \rightarrow \mu X$
 - Diluted by oscillations, pileup, cascade
- **Developed** : simulated $B^0_s
 ightarrow J/\psi \phi$
- \bullet Calibrated : self-tagged ${\it B}^{\pm} \rightarrow {\it J}/\psi {\it K}^{\pm}$

Figures of merit

- Efficiency, $\epsilon_{tag} = N_{tag}/N_{tot}$
- Mistag fraction, $\omega_{tag} = N_{wrong_tag}/N_{tag}$
- Tagging power, $P_{tag} = \epsilon_{tag} (1-2\omega_{tag})^2$

Data set	ϵ_{tag}	$\omega_{ ext{tag}}$	P _{tag}
2017 2018	$\begin{array}{c} (45.7\pm0.1)\% \\ (50.9\pm0.1)\% \end{array}$	$(27.1 \pm 0.1)\%$ $(27.3 \pm 0.1)\%$	$egin{aligned} & (\textbf{9.6}\pm0.1)\% \ & (\textbf{10.5}\pm0.1)\% \end{aligned}$
Run-1	$(8.31\pm 0.03)\%$	$(30.2\pm 0.3)\%$	$(1.31\pm 0.03)\%$

Final tagging performance measured in data using $B^{\pm}_{\pm} \rightarrow J/\psi K^{\pm}_{\Sigma}$

CPV phase (ϕ_s) in $B_s \to J/\psi$

Maximum Likelihood Fit

- The model parameters are estimated using an unbinned maximum likelihood fit
- The information used by the fit includes the following variables describing the $B_s^0 \rightarrow J/\psi\phi$ candidates:

Input observables

- Mass, *M*_{B⁰}
- Proper decay time, $t_{B_s^0} = \frac{L_{xy}M_{B_s^0}}{p_T}$
- 3 angles between final state particles in transversity basis $\Omega(\cos \theta_T, \cos \psi_T, \phi_T)$
- Flavor tag information

Physics parameters

- CPV phase, ϕ_s
- Decay widths: Γ_s , $\Delta\Gamma_s$
- mass difference, Δm_s
- CP-state decay amplitudes and their phases
- Likelihood function: components describing the signal and bkg contributions (combinatorial and peaking bkg, dominated by $B^0 \rightarrow J/\psi K^0_{892} \rightarrow \mu^+ \mu^- K^+ \pi^-$)

The angular distributions for the B_s^0 candidates

CPV phase (ϕ_s) in $B_s \to J/\psi_s$

ELE NOR

Introduction • ϕ_s in $B_s \rightarrow J/\psi \phi(1020)$

2 Analysis strategy

- The Apparatus
- Event selection & reconstruction
- Flavor tagging

토▶ ▲ 토▶ 토|티 - 이익⊙

Results

Parameter	Fit value	Stat.	Syst.
ϕ_s [mrad]	-11	±50	±10
$\Delta \Gamma_s[ps^{-1}]$	0.114	± 0.014	± 0.007
$\Gamma_s[ps^{-1}]$	0.6531	± 0.0042	± 0.0024
$\Delta m_s [\hbar p s^{-1}]$	17.51	± 0.10	± 0.03
$ \lambda $	0.972	± 0.026	± 0.008

Table: Results of the fit to data

Combination with 8 TeV results

The results are combined with those from the previous analysis at $\sqrt{s} = 8 \text{ TeV}$ [Phys. Lett. B 757 (2016) 97]

- The combination is in agreement with the SM $\phi_s = -21 \pm 44 \pm 10 \text{ mrad}$ $\Delta \Gamma_s = 0.1032 \pm 0.0095 \pm 0.0048 \text{ ps}^{-1}$
- \bullet Increased tag accuracy due new trigger strategy improved ϕ_{s} uncertainty

$$\phi_s^{SM} = -36.96^{+0.72}_{-0.84}$$
 mrad
 $\Delta\Gamma_s^{SM} = 0.1032 \pm 0.013 \ ps^{-1}$

2-D likelihood contours in $\phi_s - \Delta \Gamma_s$ plane $\alpha_s \sim \beta_s$

Summary & Outlook

• The CPV phase ϕ_s and decay width difference $\Delta\Gamma_s$ are measured using 48,500 $B_s J/\psi\phi$ candidates at $\sqrt{s} = 13$ TeV, corresponding to $\mathcal{L}_{int} = 96.4 \ fb^{-1}$

New trigger strategy + Novel OS- μ tagger \Rightarrow Improved sensitivity + Reduced statistic

• Results are consistent with the Standard Model predictions

⇒ ≥ | = √Q ∩

Summary & Outlook

• The CPV phase ϕ_s and decay width difference $\Delta\Gamma_s$ are measured using 48,500 $B_s J/\psi\phi$ candidates at $\sqrt{s} = 13$ TeV, corresponding to $\mathcal{L}_{int} = 96.4 \ fb^{-1}$

New trigger strategy + Novel OS- μ tagger \Rightarrow Improved sensitivity + Reduced statistic

• Results are consistent with the Standard Model predictions

Thank You!

*Acknowledgement: Some information is adapted from Alberto and Ali's talk!

Samadhan Kamble

CPV phase (ϕ_s) in $B_s \to J/\psi_q$

0/4

3 5

Extra Slides

Greatness of the SM in a slide!

CMS co-ordinate system

Samadhan Kamble

CPV phase (ϕ_s) in $B_s \to J/\psi d$

December 12, 2022

ヨト・モート

< 口 > < 同

三日 のへで

Price for higher luminosity!

CPV phase (ϕ_s) in $B_s \rightarrow J/\psi_s$