First measurement of time-dependent *CP* violation in $B^0 \rightarrow K_S^0 \pi^0$ decays at Belle II

Sagar Hazra

1/10

DAE symposium 2022

Motivation

- The sum-rule relation proposed by Gronau for $B \to K\pi$ provides a stringent test of SM $\mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} = \mathcal{A}_{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} + \mathcal{A}_{K^0\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)}$
- Predicted $A_{K^0\pi^0} = -0.17 \pm 0.06$, Phys.Lett. B627 (2005) 82-8
- The limiting factor is $\mathcal{A}_{K^0\pi^0}$ precision. Need to push on this measurement, where Belle II is the key player.
- $B^0
 ightarrow {\cal K}^0 \pi^0$ is a golden mode at Belle II

B meson reconstruction

Selection criteria

- $B^0
 ightarrow K^0_s (
 ightarrow \pi^+\pi^-) \pi^0 (
 ightarrow \gamma \gamma)$
 - π^0 reconstructed from a pair of photons
 - K_S^0 reconstructed from two oppositely charged tracks, assumed to be pions
- $B^0
 ightarrow J/\psi(
 ightarrow \mu^+\mu^-) K^0_S(
 ightarrow \pi^+\pi^-)$ [control channel]
 - K_S^0 selection criteria are same like the signal mode
 - Only K_S^0 used for B^0 vertexing to mimic the signal decay
 - J/ψ reconstructed from dimuons
 - Following two kinematic variables used to select B meson

•
$$M_{bc}=\sqrt{E_{beam}^{*2}-ec{p}_B^{*2}}$$

• $\Delta E = E_{beam}^* - E_B^*$

Background study

Continuum supression

ullet Use a BDT to suppress the $e^+e^- \to q\overline{q}$ background

DAE symposium 2022

Court

Flavor tagging

- q = +1 for B^0 and q = -1 for B^0 tag
- r = 0 for no flavor information
- *r* = 1 for unambiguous flavor assignment
- Wrong tagging probability $w = \frac{1-r}{2}$

Going for time-dependent analysis

- Challenge: For $K_S^0 \pi^0$, no primary charge track to help in vertexing, which leads to a poor decay time resolution
- B^0 vertex position is determined by projecting the K_S^0 trajectory to the interaction region

TDCPV fitter preparation

• Divide the dataset into 7 $q \cdot r$ bins for a simultaneous miaximun liklihood fit:

Compt.	Treatment during the fit
Signal	PDF shapes fixed from a $q \cdot r$ binned signal MC fit
	Floating parameters are the signal yield and \mathcal{A}_{CP}
	Fix the \mathcal{S}_{CP} value to the world-average of 0.57 [1]
ВĒ	PDF shapes are fixed from integrated $q \cdot r$ bin MC fit
	$B\bar{B}$ yield is floated with Gauss-constraint.
qq	PDF shape parameters are floated over the $q \cdot r$ bin

- Signal and background modelled with an empirical PDF determined from MC
- Challenge: Perform a four-dimensional simultaneos fit in seven $q \cdot r$ bins
- Validate the framework with $B^0 \rightarrow J/\psi K_S^0$ control channel.
 - 1] https://hflav-eos.web.cern.ch/hflav-eos/triangle/pdg2021

Projection of the fit result

• Signal enhanced region: 5.27< $M_{bc} <$ 5.29 $GeV/c^2,$ -0.15 $<\Delta E <$ 0.1 GeV and $C_{out}^{'} > 0$

Shown fit projections are for the candidates with integrated $q \cdot r$ bin

Final results

Preliminary

Dominant systematic uncertainties

Source	$\delta \mathcal{B}$ (%)	δA_{CP}
π^0 reconstruction efficiency	7.5	-
Resolution function	_	0.050

Observable	Fitted value	World-average[1]
$\mathscr{B}(B^0 o K^0 \pi^0) imes 10^{-6}$	$11.0 \pm 1.2(\textit{stat}) \pm 1.0(\textit{syst})$	9.9 ± 0.5
\mathcal{A}_{CP}	$-0.41^{+0.30}_{-0.32}(\textit{stat})\pm0.09(\textit{syst})$	-0.01 ± 0.1

 $N_{\rm sig} = 135.0^{+16.0}_{-15.0}$

B and *A_{CP}* are consistent with PDG values within uncertainty
 1] https://hflav-eos.web.cern.ch/hflav-eos/triangle/pdg2021
 S. Hazra
 DAE symposium 2022
 December 15, 2022
 9/

9/10

Summary and Plans

- \bullet Studied the $189.8 {\rm fb}^{-1}$ data to measure ${\mathscr B}$ and ${\mathcal A}_{CP}$
- ullet \mathscr{B} and \mathcal{A}_{CP} are consistent with PDG values within uncertainty
- The Belle II public result is available online: https://arxiv.org/abs/2206.07453
- \bullet Work underway to have a journal paper soon with $361.5 {\rm fb}^{-1}$ dataset

Thank You

Motivation

- In the SM, the decay $B^0 \to K^0 \pi^0$ proceeds via $b \rightarrow s$ loop diagrams.
- Such FCNC transitions are highly suppressed in the SM and sensitive to non-SM particles appearing in the loops.

- τ_{B^0} = lifetime of B^0 , $\Delta m_d = B^0 - \bar{B^0}$ mixing frequency
- $\Delta t = t_{CP} t_{tag}$ (decay time diff.)

•
$$A_{CP} = \frac{\Gamma(\bar{B^0} \rightarrow f_{CP}) - \Gamma(B^0 \rightarrow f_{CP})}{\Gamma(\bar{B^0} \rightarrow f_{CP}) + \Gamma(B^0 \rightarrow f_{CP})} =$$

•
$$S_{CP}$$
 = mixing induced CPV

• In SM, $A_{CP} \approx 0 \& S_{CP} = \sin 2\beta$

Outline

- Motivation
- Development of time-dependent CPV fit
- Systematic uncertainties
- First measurement of \mathcal{B} and A_{CP}
- Summary and Plans

Analysis overview

Selection

• baseline selection cut optimised on simulation followed by optimisation of continumm suppression cut.

Efficiencies and corrections

• efficiencies from simulation, validated on data

Signal extraction

- develop fit model from simulation, adjusted on control mode
- determine selection efficiencies for ${\mathscr B}$ calculation

Sytematic uncertainties

• toy studies and control mode analyses

Validation & unblinding

validate the full analysis on control on data
apply full analysis to data

S. Hazra

Modified M_{bc}

• π^0 in the final state causes correlation between ΔE and M_{bc} . • $M_{bc} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$ • $p_B^* = p_{K_S^0}^* + p_{\pi^0}^*$ • $p_B^* = p_{K_S^0}^* + \frac{p_{\pi^0}^*}{|p_{\pi^0}^*|} \cdot \sqrt{(E_{beam}^* - E_{K_S^0}^*)^2 - m_{\pi^0}^2}$

Comp.	Before	After
Signal	18.9%	-0.7%
ΒĒ	-6.4%	4.4%
$q\bar{q}$	-0.4%	0.4%

Following M_{bc} reffered as modified M'_{bc}

DAE symposium 2022

Background study

Continuum supression

• $R_2 = \frac{H_2}{H_0} = \frac{\sum_i^N \sum_j^N ||\vec{p_i}||\vec{q_j}| \cdot (3\cos^2 \theta_{ij} - 1)]}{2 \sum_i^N \sum_i^N ||\vec{p_i}||\vec{p_j}|}$, for $q\bar{q}$ events $\cos \theta_{ij} \approx 1$

Log-transform of continuum output

- We transform the BDT classifier output (C_{out}) to (C'_{out}) in order to parametrize using a simple PDF
- Transform continumm suppression variable is defined as

$$C_{out}' = log(\frac{C_{out} - C_{out_{min}}}{C_{out_{max}} - C_{out}}) \quad (1)$$

where $C_{out_{max}}$ =0.99 and $C_{out_{min}}$ =0.60

Background study continued

- We do not find any $B\bar{B}$ events peaking in the ΔE signal region.
- There is non-neglible $B\overline{B}$ combinatorial background present.

Correlation among fit variables—

Category	$\Delta E - \Delta t$	$M_{\rm bc}$ - C_{out}	$M_{ m bc}$ – Δt	$\Delta E - C'_{out}$	$\Delta t - C'_{out}$
Signal	-0.01%	0.8%	0.7%	0.2%	0.3%
ВĒ	-0.1%	2.1%	-0.6%	-3.7%	-3.2%
$q\bar{q}$	-0.3%	-0.5%	0.5%	0.2%	0.6%

Decay-time uncertainty and time resolution

- Double peak observed in Δt_{err} distribution.
- Feature reproduced in the control channel.
- Considering contributions from both the peaks.
- Sum of two Gaussian use for the resolution function.

• Removing poor decay time resolution by applying $\sigma_{\Delta t_{err}} < 2.5$ ps.

• Signal efficiency = 12.3% ($N_{sig}^{expt} = 122$)

Validation results

- Check consistency with 1000 experiment
 - \rightarrow Pure toys: generate data from the PDFs and fit back.

 \rightarrow GSIM toys: signal are sampling from simulated data, $B\bar{B}$ and $q\bar{q}$ are generated from PDFs

Pure toy

1 410 209					
Parameter	Pull mean	Pull width	Fit value	Expected	
Signal yield	0.06 ± 0.03	1.06 ± 0.03	124 ± 15	122	
Continuum yield	0.02 ± 0.04	1.02 ± 0.03	2501 ± 53	2509	
$Bar{B}$ yield	gauss-cons.	gauss-cons.	43 ± 4	43	
\mathcal{A}_{CP}	0.02 ± 0.04	1.08 ± 0.03	0.02 ± 0.33	0.0	
	GSIN	Л toy———			
·					
Parameter	Pull mean	Pull width	Fit value	Expected	
Signal yield	0.03 ± 0.04	1.03 ± 0.03	123 ± 14	122	
Continuum yield	-0.03 ± 0.04	1.02 ± 0.03	2506 ± 49	2509	
Continuum yield <i>BĒ</i> yield	-0.03 ± 0.04 gauss-cons.	1.02 ± 0.03 gauss-cons.	$\begin{array}{c} 2506\pm49\\ 43\pm4 \end{array}$	2509 43	
Continuum yield $B\bar{B}$ yield \mathcal{A}_{CP}	$\begin{array}{c} -0.03\pm0.04\\ \text{gauss-cons.}\\ -0.07\pm0.04\end{array}$	$\begin{array}{c} 1.02\pm0.03\\ \text{gauss-cons.}\\ 0.98\pm0.03 \end{array}$	$\begin{array}{c} 2506 \pm 49 \\ 43 \pm 4 \\ -0.01 \pm 0.30 \end{array}$	2509 43 0.0	

• There is no significant bias!

Control channel modelling

"Yesterday's discovery is today's calibration" - R.Feynman

- Want to perform the full analysis on the $B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K_S^0$ decay as a validation. Compare with known values, a measurement of $\rightarrow B^0$ lifetime, A_{CP} and S_{CP}
- Only K_S^0 used for B^0 vertexing
- First, develop the analysis on simulation, as done for the rare decay
- Simplified fit: since $B^0 \rightarrow J/\psi K_S^0$ is much cleaner, don't need CS. Fit M_{bc} and Δt only (details in backup).
- Same approach for flavour-tagging and time-dependent PDF: \rightarrow 7 $q \cdot r$ bin fit. \rightarrow cut a $\Delta t_{err} < 2.5$ ps, and resolution function (sum of two Gaussian)

B Lifetime fit(Data)

• 189.8 *fb*⁻¹ Data

• Lifetime is consistent within uncertainty.

1] https://hflav-eos.web.cern.ch/hflav-eos/triangle/pdg2021

Example of fit projection (Data)

Results for $B^0 \rightarrow J/\psi K_S^0$

Preliminary !

• Sample size corresponding to 189.8 fb^{-1}

Parameter	Fitted value	WA[1]
\mathcal{A}_{CP}	$0.031\substack{+0.099\-0.098}$	0.000 ± 0.020
\mathcal{S}_{CP}	$0.818\substack{+0.156\\-0.164}$	0.695 ± 0.019

• \mathcal{A}_{CP} and \mathcal{S}_{CP} are consistent within uncertainty.

1] https://hflav-eos.web.cern.ch/hflav-eos/triangle/pdg2021

Systematic uncertainty

Preliminary !

Table: List of systematic uncertainties contributing to the measured branching fraction.

Source	$\delta \mathcal{B}(\%)$
Tracking efficiency	0.6
K_S^0 reconstruction efficiency	4.2
π^{0} reconstruction efficiency	7.5
Cont. supp. efficiency (see backup)	1.6
Number of $B\overline{B}$ events	3.2
Signal model	1.0
Continuum background model	0.9
Possible fit bias	2.0
Physics parameters	0.4
Total	9.6

Systematic uncertainty

Preliminary !

Table: List of systematic uncertainties contributing to \mathcal{A}_{CP} .

Source	δA_{CP}
Flavor tagging	0.040
Resolution function	0.050
Physics parameter	0.021
B decay background asymmetry	0.002
Possible fit bias	0.010
Tag-side interference[1]	0.038
Background modeling	0.004
Signal modeling	0.015
Total	0.086

1] I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 108, 171802 (2012)

CKM Matrix

• The CKM matrix is a unitary matrix: $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{\dagger} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

From the unitarity condition, 6 equations are derived.

- From physics discussion, the Wolfenstein parameterization is obtained:

$$V_{\rm CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- You need to remember that V_{td} and V_{ub} are complex.
- You need to remember $\lambda \approx 0.2$ plus the order of λ for each element.
- You need to remember $A \approx 0.8$.

CKM Triangle

- Each of the equation forms a triangle on the complex plane.
- The bottom right triangle, which is associated to the equation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ is moderately large.

• By assuming $V_{ud}V_{ub}^*$, $V_{cd}V_{cb}^*$, and $V_{td}V_{tb}^*$ are vectors, we can draw a triangle associated to the equation on the complex plane, which is called "CKM triangle".

Mixing-Induced CP Violation

 $\arg\left(B^0 \to J/\psi \, K_S^0\right) = \arg(V_{cb}^* V_{cs}) = 0$

 $\operatorname{arg}\left(\overline{B}^{0} \to J/\psi K_{S}^{0}\right) = \operatorname{arg}(V_{cb}V_{cs}) = 0$

Remember only $\arg(V_{td})$ and $\arg(V_{ub})$ are non zero.

We can extract ϕ_1 by analyzing the $B \to J/\psi K^0$ and other $(c\overline{c})K^0$ modes.

Determination of the B-Decay Position

Charged particle trajectory in a magnetic field = helix

helix parameter $\equiv (d_0, \phi_0, \omega, z_0, \tan \lambda)$

Belle II (BELLE2-NOTE-TE-2018-003)

 $(x^{P}, y^{P}, z^{P}, p_{x}^{P}, p_{y}^{P}, p_{z}^{P})$ at POCA = Point of Closest Approach

The decay position (called vertex) is determined wit the χ²-minimizing method.

The vertex that gives the minimum χ^2 is taken as the fitted vertex (KFit). When the "IP constraint" is applied to KFit, $\chi^2 + \chi_{\rm IP}^2$ is minimized where $\chi_{\rm IP}^2$ accounts for the IP spread.

Typical vertex resolution: $\delta z \approx 50 \ \mu m$

The Last Piece, $\lambda_{f_{CP}}$

• Assume we use the golden mode for the test of the Kobayashi-Maskawa theory, where $B^0 \rightarrow J/\psi K_S^0$ and $\bar{B}^0 \rightarrow J/\psi K_S^0$.

Application: CPV in *B* Decays at Belle (II)

• For
$$B^0(\bar{B}^0) \to J/\psi K_S^0$$
, $\lambda_{J/\psi K_S^0} \equiv \frac{\mathcal{A}_{f_{CP}}}{\bar{\mathcal{A}}_{f_{CP}}} \cdot \frac{q}{p} = \xi_{J/\psi K_S^0} \frac{V_{cb}^* V_{cs} V_{us}^* V_{ud}}{V_{cb} V_{cs}^* V_{us} V_{ud}^*} \cdot \frac{V_{fb}^* V_{td}}{V_{tb} V_{td}^*}$

Since only V_{td} and V_{ub} are complex, $\lambda_{J/\psi K_S^0} = \xi_{J/\psi K_S^0} \cdot e^{-2i\phi_1}$.

$$\Im m\left(\lambda_{J/\psi K_S^0}\right) = -\xi_{J/\psi K_S^0} \sin 2\phi_1 = \sin 2\phi_1.$$

$$P(t;\ell^{\pm}) = \frac{1}{2\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} (1 \pm \sin 2\phi_1 \sin \Delta m_d \Delta t)$$

• $\mathfrak{Im}(\lambda_{f_{CP}})$ depends on the $\mathcal{A}_{f_{CP}}$ and $\overline{\mathcal{A}}_{f_{CP}}$, which are determined by the chosen $B^0(\overline{B}^0) \to f_{CP}$ mode. For example, if one chooses $B^0(\overline{B}^0) \to \pi^+\pi^-$, he/she obtains the $P(t; \ell^{\pm})$ equation with sin $2\phi_2$.

$B[10^{-6}]$					
Mode	BaBar	Belle			
$K^+\pi^-$	$19.1\pm 0.6\pm 0.6~[16]$	$20.00 \pm 0.34 \pm 0.60 \; [17]$			
$K^+\pi^0$	$13.6\pm0.6\pm0.7~[18]$	$12.62 \pm 0.31 \pm 0.56$ [17]			
$K^0\pi^+$	$23.9 \pm 1.1 \pm 1.0 \ [19]$	$23.97 \pm 0.53 \pm 0.71$ [17]			
$K^0\pi^0$	$10.1 \pm 0.6 \pm 0.4$ [20]	$9.68 \pm 0.46 \pm 0.50 \ [17]$			

\mathcal{A}_{CP}							
Mode	BaBar	Belle	LHCb	CDF			
$K^+\pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [20]	$-0.069 \pm 0.014 \pm 0.007 \; [17]$	$-0.084 \pm 0.004 \pm 0.003 \; [21]$	$-0.083 \pm 0.013 \pm 0.004 \; [22]$			
$K^+\pi^0$	$0.030 \pm 0.039 \pm 0.010$ [18]	$0.043 \pm 0.024 \pm 0.002$ [17]	$0.025 \!\pm\! 0.015 \!\pm\! 0.006 \!\pm\! 0.003 \ [23]$				
$K^0\pi^+$	$-0.029 \pm 0.039 \pm 0.010 \; [19]$	$-0.011 \pm 0.021 \pm 0.006 \ [17]$	$-0.022 \pm 0.025 \pm 0.010$ [24]				
$K^0\pi^0$	$-0.13 \pm 0.13 \pm 0.03$ [25]	$0.14 \pm 0.13 \pm 0.06$ [26]					

CP Violation

- Physical laws not invariant under charge conjugation + parity inversion (mirror flip)
- Consequence of interference when a physical process can proceed in different ways
- CP violation in mixing: $B^0 \to \overline{B^0} \neq \overline{B^0} \to B^0$
- Indirect CP violation: asymmetry due to interference between mixing and decay amplitudes
- **Direct CP violation:** $B \rightarrow f \neq \overline{B} \rightarrow \overline{f}$ due to interference in decay amplitudes
 - Requires non-zero relative weak and strong phase between amplitudes

 $B \xrightarrow{\pi} (A\lambda^{3}(\rho - i\eta)) \xrightarrow{\pi} f$

 W^+

01/12/2020

The $B \rightarrow K\pi$ System

- $B^0 \rightarrow K^+\pi^-, B^0 \rightarrow K^0\pi^0, B^+ \rightarrow K^+\pi^0, B^+ \rightarrow K^0\pi^+$
- Dominated by QCD penguin diagrams
 - Suppressed by loop
 - Tree suppressed by Vub
- Different Kπ decays have contributions from different diagrams
- Potentially sensitive to new physics through massive virtual particles in loops

(c) $B \to K \pi^0$ color-suppressed tree diagrams

(d) $B \to K \pi^0$ electroweak penguin diagrams

The $K\pi$ Puzzle

- CP asymmetry in $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow K^+\pi^0$ from interference between tree and penguin diagrams
- Expected to be equal from isospin arguments
- Differs by more than 5σ according to current measurements

$$\begin{array}{l} A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^- \\ = 0.124 \pm 0.021 \end{array}$$

01/12/2020

The $K\pi$ Puzzle

SuperKEKB and Belle II Detector

- Asymmetric collider: e^- to 7 GeV and e^+ to 4 GeV \rightarrow clean experimental environment
- World record peak luminosity: $3.1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- New tracking system and improved vertexing
- Improved particle identification
- Better time resolution at calorimeter

Goal:

- Collect more than 50 ${
 m ab}^{-1}$ data (5 imes 10¹⁰ $Bar{B}$ pairs)
- 700 $B\bar{B}$ pairs/second

Currently:

 $\bullet~216~{\rm fb}^{-1}$ data are collected. Today: results on $\approx 63 {\rm fb}^{-1}$

Selection criteria

- $B^0
 ightarrow K^0_s \pi^0$ selection
 - $120 < m_{\pi^0} < 145$ MeV and $|\cos heta_H| < 0.98$
 - Barrel $E_\gamma >$ 30, Backward $E_\gamma >$ 60 and Forward $E_\gamma >$ 80 MeV
 - $482 < m_{K_c^0} < 513 \text{ MeV}$
 - 5.24 $< M_{bc} <$ 5.3 GeV and $-0.3 < \Delta E <$ 0.3 GeV

$B^0 ightarrow J/\psi K^0_S$ selection

- Criterias are taken from BELLE2-NOTE-PH-2020-038.
- dr < 0.5 cm, |dz| < 3 cm, for muon tracks.
- muonID(μ^+) or muonID(μ^+) > 0.2
- 2.80 $< M_{J/\psi} <$ 3.40 GeV and 482 $< M_{K_c^0} <$ 513 MeV
- 5.2 $< M_{bc} <$ 5.3 GeV and $|\Delta E| <$ 0.05 GeV
- For CP-side: IP constraint and only K_S^0 vertexing
- For tag-side : IP constraint
- $\sigma_{\Delta t} < 2.5 \ \mathrm{ps}$

Rare components investigation

2D (Mbc, ΔE) Extended Fit (Cont'd)

• Rare background contributing to the analysis region:

expected @ 62 8 fb-1

		Mode	B[10 ⁻⁶] (PDG2020 Avg. [3])	ϵ [%]	Yield	
		$\rho^+ K^0$	$7.3^{+1.0}_{-1.2}$	1.05	5.5 ± 0.8	dominant processes
N Scale of a co	B^+	$K^{*}(892)^{+}\pi^{0}$	6.8 ± 0.9	0.85	4.1 ± 0.5	$B \rightarrow K^0 \pi^+ \pi^0$
$N = \int \mathscr{L}dt \cdot \sigma \cdot f \cdot \cdot \cdot 2 \cdot \mathscr{B} \cdot$	e	$X_{s,u}\gamma$	349 ± 19	< 0.01	0.7 ± 0.0	(<u>r bo</u> , <u>r nb</u>)
		$a_1(1260)^+K^0$	35 ± 7	< 0.01	0.1 ± 0.0	
		$f_2(1270)K^0$	$2.7^{+1.3}_{-1.2}$	0.52	1.0 ± 0.4	
		$f_0(980)K^0$	4.1 ± 0.4	0.19	0.5 ± 0.1	
$N = \int \mathscr{L}dt \cdot \boldsymbol{\sigma} \cdot f^{00} \cdot 2 \cdot \mathscr{B} \cdot \boldsymbol{\sigma}$	B ⁰	$X_{s,d}\gamma$	349 ± 19	< 0.01	0.5 ± 0.0	
n – jæti o j 2 00 -		$K^0_S K^0_S$	0.61 ± 0.08	0.50	0.2 ± 0.0	
		$K^0\eta'$	66 ± 4	< 0.01	0.1 ± 0.0	
	Sum				12.7 ± 1.1	

• Finally assign a Gauss(μ=12.7, σ=1.1) constraint on the normalization of rare background

Thrust

Thrust: For a collection of N momenta p_i (i=1, ... N), the thrust axis T is defined as the unit vector along which their total projection is maximal.

•
$$T = max \frac{\sum_{i}^{N} |\hat{T} \cdot \vec{p_i}|}{\sum_{i}^{N} |\vec{p_i}|}$$

Figure: Cosine angle between signal *B*-meson and ROE (rest of the events)

Continuum suppression

- FatBDT as the multivariate classifier.
- Same number of signal and background events.
- 600 fb^{-1} for training and 400 fb^{-1} for testing.
- Same classifier input

used(BELLE2-NOTE-PH-2020-046,BELLE2-NOTE-PH-2020-007).

-Classifier Output-

Background rejection comparison

Cut	BKG rej.	#uū	$\# d\bar{d}$	#sīs	#cē	$\#B^{0}B^{0}$	$#B^{+}B^{-}$	# signal
0.0		5434	2287	4180	4280	109	22	98
0.9	98.33 %	80	46	52	90	58	11	53

2) Continuum BKG to train CS

Cut	BKG rej.	#uū	#d₫	#s5	#cē	$#B^0B^0$	$#B^{+}B^{-}$	# signal
0.0		5434	2287	4180	4280	109	22	98
0.9	98.25 %	90	49	58	84	54	9	48

-Using BELLE2-NOTE-PH-2020-046 CS weight file-----

 $\tt https://stash.desy.de/projects/B2B2C/repos/btohadronscripts/browse/BToCharmless_WithCorr_CSFBDT.root$

Cut	BKG rej.	#uū	#d <i>d</i>	#s5	#cē	$#B^0B^0$	$#B^{+}B^{-}$	# signal
0.0		5434	2287	4180	4280	109	22	98
0.9	98.39 %	74	45	52	88	54	11	48

• Now we use the common **BToCharmless weight file** for CS

Best candidate selection

• Found some events with more than one *B* candidate in an event.

- Multiplicity=1.009
- π^0 multiplicity is severe than that of K_S^0 .
 - \rightarrow First selection based fit π^0 chiProb (p-value) ($\epsilon = 73\%$)
 - \rightarrow If the candidate has the same chiProb (p-value) on π^0 , then we do the K_S^0 chiProb (p-value) check ($\epsilon = 99\%$)

$$\epsilon_{\rm bcs} = \frac{\rm No. \ of \ truth \ matched \ events \ after \ BCS}{\rm No. \ of \ truth \ matched \ events \ with \ multiplicity > 1} = 74\%$$
 (2)

- Self-crossfeed fraction=1.5 %.
- Self-crossfeed component is taken into the signal PDF.

S. Hazra

DAE symposium 2022

Δt_{err} double peak

• We observe the decond peak due to fewer hits in VXD.

DAE symposium 2022

Effect of IP constraint

- After applying IP constraint in tag side Δt resolution improves.
- Similar trend is seen in the control channel .

 Δt_{err} vs. Hits

• We plots number of hits in VXD and CDC to find out the double peak structure in the Δt_{err} distribution.

 Δt_{err} vs. Hits

• We plots number of hits in VXD and CDC to find out the double peak structure in the Δt_{err} distribution.

DeltaTErr and Ks Vertex Position

- Location of Ks vertex on x-y plane
- Cut of 2.5 on DeltaTErr corresponds to the 5th layer of the SVD
- This means the cut requires two hits in the SVD

Ks_x:Ks_y {(0 < DeltaTErr < 2.5)}

Tim Green, University of Melbourne

9

DeltaTErr and Ks Vertex Position

Signal mode

\mathscr{B} calculation

The \mathscr{B} is calculated as

$$\mathscr{B} = \frac{N_{sig}}{\epsilon \cdot f^{00} \cdot 2 \cdot \mathscr{B}_s \cdot N_{B\bar{B}}}$$
(3)

- $\mathscr{B}_s=0.5$, probability of $K^0
 ightarrow K^0_S/K^0_L$
- $\mathscr{B}(B^0 \to K^0 \pi^0) = 9.93 imes 10^{-6}$ (PDG value 2020)
- Signal efficiency=12.3 % (all selection + loose cont. supp. cut $+\sigma_{\Delta t}$)

Signal Modeling

- Δt : RooBCPGenDecay PDF PDF convolved with double Gaussian: $P_{sig}(\Delta t, q) = \frac{exp^{-|\Delta t|/\tau_{g0}}}{4\tau_{g0}} ([1 - q\Delta w + q\mu_i(1 - 2w)] + [q(1 - 2w) + \mu_i(1 - q\Delta w)](A_{CP}\cos(\Delta m_d\Delta t) - S_{CP}\cos(\Delta m_d\Delta t)))$ Core and tail Gaussian, $\tau_{B^0} = 1.520$ ps and $\Delta m_d = 0.507/ps$
- ΔE : Crystal Ball + double Gaussian with common mean
- M_{bc} : Crystal Ball + Gaussian, C'_{out} : Bifurcated + Gaussian Example plot of integrated $q \cdot r$ bin 800 - 500 (900 000)/ 4000 3000 ₿ 4000 2000 2000 100 2 M_L [Gev/c²] ΔE [Gev] 500 5000 400 9 3000 S 3000 2000 2000 1000 1000

• In same way performed 7 $q \cdot r$ bin fit to extract the PDFs parameters

2

2

C

Continuum bkg modeling

- Δt : RooDecay PDF convolved with double Gaussian : $e^{-|t|/\tau}$ Core and tail Gaussian
- ΔE : Linear function

$B\bar{B}$ bkg Modeling

- Δt : RooDecay PDF convolved with double Gaussian : $e^{-|t|/\tau}$ Core and tail Gaussian
- 2D Kernel estimation PDF used for $\Delta E M_{bc}$ modeling
- C'_out : Bifurcated + Gaussian

$M_{\rm bc}$ - ΔE distribution between bad and good tag

BB̄ normalisation sideband study

- Sideband region ($-0.3 < \Delta E < -0.2$)
- Optimsed CS > 0.9 to reduce the continuum contribution.

Figure: Sideband M_{bc} fit results in MC (left) and data (right) events.

Parameter	MC	Data
$N_{ m peak}$	8 ± 5	10 ± 5
$N_{ m comb}$	87 ± 10	90 ± 10

- We have confirmed this hypothesis in the case of MC events.
- Therefore, the uncertainty in the $B\bar{B}$ background yield is 5.

S. Hazra

DAE symposium 2022

46 / 50

Control mode

Signal Modeling

- Δt : RooBCPGenDecay PDF convolved with double Gaussian: $P_{sig}(\Delta t, q) = \frac{exp^{-|\Delta t|/\tau_{g0}}}{4\tau_{g0}}([1 - q\Delta w + q\mu_i(1 - 2w)] + [q(1 - 2w) + \mu_i(1 - q\Delta w)](A_{CP}\cos(\Delta m_d\Delta t) - S_{CP}\cos(\Delta m_d\Delta t))))$ Core and tail Gaussian
- M_{bc} : Crystal Ball function

$B\bar{B}$ modeling

- Peaking component peaking at the true B mass (2 3% of signal events)
- Δt : RooDecay PDF convolved with double Gaussian : $e^{-|t|/\tau}$ Core and tail Gaussian
- *M_{bc}* : ARGUS + Gaussian function

$q\bar{q}$ modeling

- Δt : RooDecay PDF convolved with double Gaussian : $e^{-|t|/\tau}$ Core and tail Gaussian
- *M_{bc}* : ARGUS function

