

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Charged Particle Identification at Belle II

Swarna Prabha Maharana (On Behalf of Belle II PID Performance group)

IIT Hyderabad

XXV DAE-BRNS High Energy Physics Symposium 2022

- Need of Particle Identification in Belle II
- Belle II & Particle Identification
- Method
- Performance

Why we need PID?

• we are often interested in reconstructing the whole decay chain and hence to reconstruct all final state particles.

$$e^+e^- \rightarrow Y(4s) \rightarrow \overline{B^0} \xrightarrow{B^0} B^0$$

 $(b^+\pi^-)$
 $(b^+\pi^-)$
 (K^+K^-)

Why we need PID?

- we are often interested in reconstructing the whole decay chain and hence to reconstruct all final state particles.
 - $e^+e^- \rightarrow Y(4s) \rightarrow \overline{B^0} \xrightarrow{B^0} \xrightarrow{B^$

 A clear peak in the invariant mass distribution after PID information is taken into account.

• PID necessary to reduce background.

Belle II PID

- Each sub detector measures the likelihoods for 6 basic species
- Electron
- Muon
- Pion
- Kaon
- Proton
- Deuteron

PID

Two dedicated particle ID devices:

- Barrel: TOP
- EndCap: ARICH

In both regions, PIDs at Belle II are Ring Imaging Cherenkov devices.

PID

Two dedicated particle ID devices:

- Barrel: TOP
- EndCap: ARICH

In both regions, PIDs at Belle II are Ring Imaging Cherenkov devices.

Cherenkov radiation:

light produced by charged particles when they pass through an optically transparent medium at speeds greater than the speed of light in that medium.

- The speed is given by $\beta c = v = c/n$
- so a particle emitting cherenkov radiation must satisfy $v_{part} > c/n$
- characteristic angle: $\cos\theta_c = 1/n\beta$

16 TOP modules, arranged in barrel region of the detector

Each module contain-

- Silica bars→ Radiators
- Mirror \rightarrow focus emitted photons to the sensor plane
- Prism \rightarrow expand the image and improving resolution.
- MCPPMT ---- two rows of fast multi-anode photon detectors

• Cherenkov photons emitted in the quartz radiator → internally reflected → registered at the end of the bar by a fast position sensitive detector.

Same momentum pions and kaons will have different velocities (β) and hence the angle of Cherenkov photons. K / π different $\theta c \rightarrow$ different path length \rightarrow different time of propagation.

The TOP counter of Belle II: status and first results

13

- Provides particle identification system in the front-end endcap region.
- ARICH also relies on the relation between the emission angle of Cherenkov photons and the charged particle velocity.
- Two aerogel layers with different refraction indices (n1 = 1.045, n2 = 1.055) are used as radiator.
- Photons, emitted in aerogel, then propagate through ~20 cm of an expansion volume and hit the photon detectors.

Central Drift Chamber(CDC)

- Reconstructs charged tracks and measures their momenta precisely
- Low-momentum tracks, which do not reach the particle identification device, can be identified using the CDC alone.
- PID possible by comparing with distributions of dE/dx and combining with information PXD/SVD.

$$-dE/dx \propto \frac{z^2 Z}{A\beta^2} \left(ln \frac{2mc^2 \beta^2 \gamma^2}{I} - \beta^2 + c \right)$$

CDC-dE/dx distribution and predictions

Method-

Previous studies with $D^0 \to K\pi$ (poster by Vismaya V S)

- $D^* \to D^0[K^-\pi^+\pi^0]\pi^+$ decay mode is reconstructed to study the PID performance.
- Two opposite sign tracks with kaon and pion mass hypothesis are combined with a neutral pion to reconstruct a D^0 meson candidate.
- D^0 is combined with another charged track with pion mass hypothesis to reconstruct D^{*+}
- $D^* \rightarrow D^0[K^-\pi^+\pi^0]\pi^+$ Mode helps probe the performance in lower momentum regions.

Method-

- $D^* \to D^0[K^-\pi^+\pi^0]\pi^+$ decay mode is reconstructed to study the PID performance.
- Two opposite sign tracks with kaon and pion mass hypothesis are combined with a neutral pion to reconstruct a D^0 meson candidate.
- D^0 is combined with another charged track with pion mass hypothesis to reconstruct D^{*+}
- $D^* \to D^0[K^-\pi^+\pi^0]\pi^+$ Mode helps probe the performance in lower momentum regions.

Data Sample:

Belle II data (207fb⁻¹) compared with Monte Carlo simulation

Selection Criteria:

- | d0 |< 0.5 cm
- | z0 |< 2 cm
- nCDCHits > 20
- |ΔM 0.14543| < 1.5 MeV/c²
- $M[D^0] \in [1.75, 1.95] \text{ GeV/c}^2$
- $M[\pi^0] \in [0.121, 0.147] \, \text{GeV/c}^2$

- P*[D*]> 2.5 GeV/c
- $P[\pi^0] > 0.35 GeV/c$
- $E[\gamma 1, \gamma 2] > 0.075 GeV/c^2$
- E9/E25 > 0.9
- $\chi^2 > 0.01$
- d[D⁰]> 40μm

Kinematic Distribution of Kaon and Pion

Kaons and pions are more populated towards the lower momentum region.

Efficiency and mis-ID probability

Efficiency:

Ability to correctly assign the ID $\epsilon(K) = N(K \text{ identified as } K)/N(\text{real } K)$ The "probability of a kaon to be called kaon"

Mis-ID probability:

Ability not to assign the incorrect ID Mis-ID(K) = N(non-K identified as K)/N(non K) The "probability for a non-kaon to be called kaon"

$$\epsilon_K(\mathcal{R}_{K/\pi} > t) = \frac{N_K(\mathcal{R}_{K/\pi} > t)}{N_K}$$

$$f_{\pi}(\mathcal{R}_{K/\pi} > t) = \frac{N_{\pi}(\mathcal{R}_{K/\pi} > t)}{N_{\pi}}$$

• Kaon efficiency and π mis-identification for different PID criteria for ALL sub-detectors

• Kaon efficiency and π mis-identification in bins of momentum and polar angle for $R_{[K/\pi]} > 0.5$

Swarna(IITH)

K efficiency in 2D bins

Data/MC ratio

2 4 Momentum [GeV/c] 0.96 ± 0.01 0.98 0.91 0.94 0.96 0.96 0.99 8.00 3.5 1.8 ± 13.05 ± 0.08 ± 0.02 ± 0.02 ± 0.01 ± 0.01 0.01 3 1.6 1.19 1.10 0.97 0.95 0.96 0.96 0.97 1.00 ± 0.13 ± 0.03 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 0.01 2.5 1.4 1.17 0.98 0.96 0.95 0.97 0.97 1.00 1.05 ± 0.07 ± 0.01 ± 0.01 ± 0.01 ± 0.00 ± 0.01 0.01 ± 0.01 2 1.2 0.98 0.98 0.87 1.00 0.99 0.97 0.96 0.97 ± 0.04 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 0.01 1.5 1 0.98 0.65 0.90 0.99 0.99 0.98 0.97 1.00 ± 0.02 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00± 0.01 0.8 0.92 0.99 0.98 0.98 1.00 0.99 0.98 1.00 _± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.01 0.01 0.5 0.99 1.02 1.00 1.02 1.00 1.00 1.04 0.6 ± 0.03 0.01 ± 0.01 ± 0.01 ± 0.01 ±,0.01 ± 0.02 0.04 -0.8-0.6-0.4 -0.2 0 0.2 0.4 0.6 0.8 Polar Angle [cos0]

data-MC ratio for K efficiency

minor data-MC disagreement

- PID is essential as Belle II deals with a larger background.
- CDC along with PID(TOP, ARICH) plays role in K/ π separation.
- $D^* \rightarrow D^0[K^-\pi^+\pi^0]\pi^+$ allows to probe the performance in lower momentum region.
- There exists a slight discrepancy between data and MC.
- Kaon identification efficiency in data is around 89% with pion fake rate as low as 5% .

References

- Particle Identification at Belle II, Saurabh Sandilya
- Particle ID in Belle II ARICH and TOP, Oskar Hartbrich
- <u>The Belle II PID Detectors, Marko Starič</u>
- From PID detectors to PID variables, Umberto Tamponi

Thank You

26

 $\log \mathcal{L}_{\pi} = \log \mathcal{L}_{\pi}^{\text{SVD}} + \log \mathcal{L}_{\pi}^{\text{CDC}} + \log \mathcal{L}_{\pi}^{\text{TOP}} + \log \mathcal{L}_{\pi}^{\text{ARICH}} + \log \mathcal{L}_{\pi}^{\text{ECL}} + \log \mathcal{L}_{\pi}^{\text{KLM}}$

Belle II PID

Each sub detector measures the likelihoods for 6 basic species

- Electron
- Muon
- Pion
- Kaon Binary PID likelihood ratio,

 $R[K/\pi]$ is given by:

R[K] is given by:

- Proton
- Deuteron

Particle ID for a given species is the combination for all detectors:

 $\log \mathcal{L}_{\pi} = \log \mathcal{L}_{\pi}^{\text{SVD}} + \log \mathcal{L}_{\pi}^{\text{CDC}} + \log \mathcal{L}_{\pi}^{\text{TOP}} + \log \mathcal{L}_{\pi}^{\text{ARICH}} + \log \mathcal{L}_{\pi}^{\text{ECL}} + \log \mathcal{L}_{\pi}^{\text{KLM}}$

- parallel rays get focused to a single point.
- non-parallel rays are focused to different points(K /π separation).

allows to correct for chromatic dispersion.

- MCP-PMT : Transit time spread ~30-35ps(required<50ps)
- Quantum efficiency : >24% at 350-400nm

Central Drift Chamber(CDC)

		↑	X X	х 0	X X	Х О	X X	х 0	X X	X O	X X	X O	X X	K O	X X	х 0	X X	
		Ius	X	Х	X	X	X	X	Х	Х	X	Х	X	Х	X	Х	Х	
		ad	0	Х	0	X	0	Х	0	Х	0	Х	0	Х	0	Х	0	
		24	X	Х	Х	X	X	Х	Х	Х	Х	X	X	X	Х	Х	X	
												+ 1	ac	k				
Х	=	fie	ld	W	ir	e	5					-						
0	=	sens	se	W	ir	e	5											

(a) An axial wire layer - sense wires are parallel to the beamline

(b) A stereo wire layer - sense wires are skewed to the beamline (exaggerated)

Radius of inner cylinder (mm)	160			
Radius of outer cylinder (mm)	1130			
Radius of innermost sense wire (mm)	168			
Radius of outermost sense wire (mm)	1111.4			
Number of layers	56			
Number of sense wires	14,336			
Gas	$He - C_2 H_6$			
Diameter of sense wire (μm)	30			

Primary particle ionises gas molecules —> Secondary electrons create avalanches —> electron avalanche reaches the sense wire—-signal is generated(CDC Hit)

K⁻ efficiency in 2D bins

K efficiency

K efficiency

Belle II

ndian Institute of Technolog Hyderabad