

TOPICS

Firmware Development for the Phase-2 Upgrade of the Calorimeter L1 Trigger for the Calorimete the CMS Detector at the LHC

RTICLE PHYSICS AND COSMOLOGY

PERIMENTS AND DETECTOR DEVELOPMENT

Piyush Kumar & Bhawna Gomber in Collaboration with University of Hyderabad, Princeton University, and University of Wisconsin-Madison

BEYOND THE STANDARD MODEL

ONS AND OCD

FORMAL THEORY

High-Luminosity LHC (HL-LHC)

- Luminosity: indicate the performance of an accelerator
 - Proportional to: number of collisions that occur in a given amount of time
 - higher the luminosity: the more data the experiments can gather
- Aim: to deliver a much larger dataset for physics to the LHC experiments
- Pile-up: Number of simultaneous protonproton interactions (~200)
 - With high pile-up, need more advanced selection algorithms at L1 trigger
- This increased datasets will help in the high precision measurements of:
 - Standard model (SM)
 - new territories beyond the SM (BSM)

CMS HL-LHC upgrade

- The CMS detector planned upgrade for the HL-LHC era:
 - New pixel and strip tracking detector
 - New high-granularity calorimeter (HGCAL) of the endcap
 - New frontend/backend electronics for the:
 - Barrel calorimeter
 - Electromagnetic calorimeter (ECAL)
 - Hadronic calorimeter (HCAL)
 - Muon system
 - Drift tube (DT)
 - Cathode strip chambers (CSC)
 - 40 MHz Scouting system
 - can be used to scrutinize the collision events and identify potential signatures unreachable through standard trigger selection processes
 - L1 trigger:
 - Inclusion of the tracker information
 - Extensive usage of:
 - large FPGA (Virtex UltraScale+/Kintex UltraScale)
 - high-speed optical links (28 Gbps)

Summary of CMS HL-LHC Upgrades

Fig: CMS detector HL-LHC upgrade

3

L1 trigger principle

- At design parameters the LHC produces:
 - ~ 10⁹ events/second in CMS detectors.
 - each event is ~ 1 MB.
- 10⁹ events/s x 1 Mbyte/events = 10¹⁵ bytes/s = 1 PB/s (1 Petabyte/second)
- Problem:
 - It is impossible to store and process this large amount of data
- Solution:
 - a drastic rate reduction has to be achieved
 - Level-1: 40 MHz to 750 kHz
 - High level trigger (HLT): 750 kHz to 7.5 kHz
- A trigger is designed to reject the uninteresting events and keep the interesting ones for physics.

Modern large-scale experiments are really BIG

... and really FAST

- i.e. LHC experiments (ATLAS/CMS)
- ~100M channels
- ~1-2 MB of RAW data per measurement
- ▶ ~40 MHz measurement rate (every 25 ns @ the LHC)

Data volume is a *key issue* in modern large-scale experiments

CMS L1 trigger principle – a hardware perspective

5

Calorimeter L1 trigger architecture (Barrel/Endcap/HF)

- Calorimeter trigger is processed in the following steps:
 - Barrel: Regional calorimeter trigger (RCT) and Global calorimeter trigger (GCT)
 - HF and HGCAL: GCT
- The barrel calorimeter covers the geometry of |η| = 1.48
 - Processed in two steps
 - RCT: currently 36 XCVU9P (3 SLR#) FPGAs
 - GCT: 3 XCVU9P FPGAs
- RCT geometry for the FPGA processing:
 - $17\eta \times 4\phi$ of the barrel (for 36 FPGAs)
 - $17\eta \times 6\phi$ of the barrel (for 24 FPGAs)
- GCT geometry for the FPGA processing:
 - 12 unique RCT (17 η ×4 ϕ) + 4 neighbours
 - 8 unique RCT (17 η ×6 ϕ) + 4 neighbours

- Increased output rate: 100 kHz => 750 kHz
- Increased latency: 3.8 µS => 12.5 µS

Barrel calorimeter segmentation

Piyush Kumar & Bhawna Gomber | Firmware Development for the Phase-2 Upgrade of the Calorimeter L1 Trigger for the CMS Detector at the LHC

7

Trigger Firmware Development

- The trigger algorithms are implemented by using a high level synthesis tool
 - Rapid prototyping
 - Codes are written in C++
 - HLS synthesizes the code to generate the HDL (hardware description language) and
 - Provide an early estimate of latency and resource utilization
 - Increased ease of collaboration and code sharing for algorithm design

Project Flow:

- •Algorithm development/MC simulation
- •HLS algorithm implementation and simulation
- •HLS algorithm integration into firmware shell
- •Standalone testing on hardware

•(R_x buffer -> Algorithm -> T_x buffer)
 •Testing and final validation of results through the entire chain
 •MC == HLS Sim == HDL Sim == HW Results

Aim is to write HLS algorithms in a framework agnostic way

Performance Estimates

Timing (ns)

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	4.17	2.917	1.25

Latency (clock cycles)

Summary

Late	ency	Inte	erval	
min	max	min	max	Туре
158	158	6	6	function

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	520	-
FIFO	-	-	-	-	-
Instance	0	0	280881	397283	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	12656	-
Register	0	-	7808	512	-
Total	0	0	288689	410971	0
Available	4320	6840	2364480	1182240	960
Available SLR	1440	2280	788160	394080	320
Utilization (%)	0	0	12	34	0
Utilization SLR (%)	0	0	36	104	0

Fig: Trigger algo device implementation

Fig: Vivado-HLS performance estimates of trigger algorithm

RCT algorithm

- Input:
 - ECAL: 17x4x5x5 crystals
 - HCAL: 16x4 towers
- Output: calorimeter clusters and towers information
 - Cluster energy
 - Tower energy
 - Peak (or seed) crystal energy and positional information
- Input-Output link BW: 25 Gbps
- Implemented only in 2 SLR (SLR2 and SLR1)
- Bitstream is successfully tested using the 113 bunch-crossing of LHC data (standalone mode).
 - Generated by MC simulation
- Latency: 269.466 ns (1 µs budget) @360 MHz

GCT algorithm

- GCT stitches makes clusters forwards to Correlator and Global trigger (GT)
- Sorts EGamma and hadronic clusters
- Firmware is developed for the MET algorithm
 - Processes 12 unique RCT cards
- MET utilizes the CORDIC algorithm
 - Calculate the \cos and \sin of LHC azimuthal angle (ϕ)
- Calculates E_x, E_y for missing transverse momentum (MET)
- Bitstream is tested successfully using output of 12 RCT cards (standalone mode)
- Latency: 163.902 ns

RCT and GCT multi-board test

- Setup at University of Wisconsin Madison lab
- 4 APd1 board (first Advanced Processor demonstrator)
 employed
 - 3 for RCT
 - 1 for GCT

Project Flow (Multi-board):

- Algorithm development/MC simulation
- HLS algorithm implementation and simulation
- HLS algorithm integration into firmware shell
- Standalone testing on hardware
 - (R_x buffer -> Algorithm -> T_x buffer)
- Multi-card testing and final validation of results
 through the entire chain
 - MC == HLS Sim == HDL Sim == HW Results

Fig: Multi-board test chain

Fig: APd1 board at UW lab

Pivush Kumar

RCT and GCT multi-board test

RCT and GCT multi-board test

Summary and Future Plan

- RCT algorithm firmware is developed and tested successfully on the APd1 board with 113 BX TVs using three different physics TVs.
 - Latency: 269.466 ns (within the required budget)
- MET algorithm is implemented and successfully tested on the APd1 board using RCT generated output.
 - Latency: 163.902 ns
- Multi-board test using 4 APd1 board at UW lab is carried successfully with the following specification
 - RCT: 3 APd1 board
 - GCT: 1 APd1 board
 - Both the algorithms are running @360 MHz clock
- Complete chain of *MC == HLS Sim == HDL Sim == HW Results* from RCT (3 APd1) board to GCT (1 APd1) board is verified successfully.
- Several algorithms at GCT front are in development phase:
 - Taus
 - Jets
 - Sums

Thank you

Acknowledgement

 Piyush Kumar and Bhawna Gomber acknowledges the support from IOE, University of Hyderabad through Grant Number UOH-IOE-RC2-21-006

CASEST CENTRE FOR ADVANCED STUDIES IN

ELECTRONICS SCIENCE & TECHNOLOGY

- The SSI technology integrate multiple Super Logic Region (SLR) components placed on a passive Silicon Interposer (fig 3).
- Each SLR contains the active circuitry common to most Xilinx FPGA (Field programmable gate array) devices. This circuitry includes large numbers of:
 - 6-input LUTs (Look-up tables)
 - Registers
 - I/O components
 - Gigabit Transceivers (GT)
 - Block memory
 - DSP blocks
 - Other blocks
- The device we are using for our synthesis and implementation is based on Xilinx SSI technology and support three SLRs.
 - Xilinx Virtex UltraScale+ xcvu9p flgc2104-1-e FPGA

Xilinx Stacked Silicon Interconnect (SSI) Technology

*: UG872 Large FPGA Methodology Guide

Barrel Calorimeter Segmentation (New)

Fig 2: Barrel calorimeter segmentation (new)

Physics bandwidth vs Algo clock @ 16G

LHC BC Clock [MHz]	40.08
Word Bit Size	66
Line Rate [Gbps]	16.00000
Max Theoretical Words/Bx	6.04851

		TM1		TM6			TM18		
Bx Frame Length (TM interval)	1	1	1	6	6	6	18	18	18
Words/Frame	4	5	6	24	30	36	72	90	108
Equiv. Words/Bx	4.00	5.00	6.00	4.00	5.00	6.00	4.00	5.00	6.00
Equiv. Bits/Bx	256	320	384	256	320	384	256	320	384
Data Rate [Gbps]	10.58	13.23	15.87	10.58	13.23	15.87	10.58	13.23	15.87
Filler Rate [Gbps]	5.42	2.77	0.13	5.42	2.77	0.13	5.42	2.77	0.13
Average Filler Words/Bx	2.05	1.05	0.05	2.05	1.05	0.05	2.05	1.05	0.05
Average Filler Words/Orbit	7300.89	3736.89	172.89	7300.89	3736.89	172.89	7300.89	3736.89	172.89
Average Filler Words/Frame	2.05	1.05	0.05	12.29	6.29	0.29	36.87	18.87	0.87
Payload Bits/Frame	256	320	384	1536	1920	2304	4608	5760	6912
Algo Clock @ 64b i/f [MHz]	160.32	200.4	240.48	160.32	200.4	240.48	160.32	200.4	240.48

Physics bandwidth vs Algo clock @ 25G

HC BC Clock [MHz]	40.08
/ord Bit Size	66
ne Rate [Gbps]	25.78125
lax Theoretical Words/Bx	9.74613

								-			
	TM1			TM6			TM18				
Bx Frame Length (TM interval)	1	1	1	6	6	6	18	18	18		
Words/Frame	7	8	9	42	48	54	126	144	162		
Equiv. Words/Bx	7.00	8.00	9.00	7.00	8.00	9.00	7.00	8.00	9.00		
Equiv. Bits/Bx	448	512	576	448	512	576	448	512	576		
Data Rate [Gbps]	18.52	21.16	23.81	18.52	21.16	23.81	18.52	21.16	23.8		
Filler Rate [Gbps]	7.26	4.62	1.97	7.26	4.62	1.97	7.26	4.62	1.97		
Average Filler Words/Bx	2.75	1.75	0.75	2.75	1.75	0.75	2.75	1.75	0.75		
Average Filler Words/Orbit	9787.22	6223.22	2659.22	9787.22	6223.22	2659.22	9787.22	6223.22	2659.22		
Average Filler Words/Frame	2.75	1.75	0.75	16.48	10.48	4.48	49.43	31.43	13.43		
Payload Bits/Frame	448	512	576	2688	3072	3456	8064	9216	10368		
Algo Clock @ 64b i/f[MHz]	280.56	320.64	360.72	280.56	320.64	360.72	280.56	320.64	360.72		

Project hierarchy and floor planning

APx Firmware shell

Iridis – 64b66bbased optimized signaling method and firmware cores for CMS Trigger applications

