Performance studies of GEM detector for future Heavy-Ion experiments

Sayak Chatterjee, Arindam Sen, Supriya Das, Saikat Biswas Department of Physics Bose Institute

XXV DAE-BRNS HEP SYMPOSIUM, IISER Mohali, December 12-16, 2022

Outline

- Introduction
- Gas Electron Multiplier (GEM) detector
- Characterisation of GEM detector
 - Efficiency
 - Uniformity in performance
 - Long-term stability study
- Effect of radiation on the performance of the chamber
 - Charging-up effect
- Summary

Introduction

- Systematic exploration of the QCD phase diagram
 - Low baryon density regime (LHC, RHIC ...)
 - High baryon density regime (RHIC BES, SPS, CBM ...)
- Precise measurement of the physics observables of interest
 - High luminosity
- Detectors with high rate handling capabilities
 - Micro Pattern Gas Detectors (MPGD)
- Innovative technologies for data acquisition

Eur. Phys. J A53 (2017) 60; CBM Collaboration, EPJA 53 3 (2017) 60; T.Galatyuk, NPA982 (2019), update (2021)

- GEM foil is made of Copper cladded Kapton foil of thickness 60 µm
- Good rate handling capability (~ 1 MHz/mm²)
- High efficiency (>95%)
- Can be operated in cascaded mode
- Good spatial resolution (~ 70 μm)
- Operated with non-flammable gas mixtures (conventionally Ar-CO₂)
- Depending on the photolithographic techniques used, the GEM foils are classified as Double Mask (DM) or Single Mask (SM) GEM foils

4

- GEM foil is made of Copper cladded Kapton foil of thickness 60 µm
- Good rate handling capability (~ 1 MHz/mm²)
- High efficiency (>95%)
- Can be operated in cascaded mode
- Good spatial resolution (~ 70 µm)
- Operated with non-flammable gas mixtures (conventionally Ar-CO₂)
- Depending on the photolithographic techniques used, the GEM foils are classified as Double Mask (DM) or Single Mask (SM) GEM foils

- GEM foil is made of Copper cladded Kapton foil of thickness 60 µm
- Good rate handling capability (~ 1 MHz/mm²)
- High efficiency (>95%)
- Can be operated in cascaded mode
- Good spatial resolution (~ 70 µm)
- Operated with non-flammable gas mixtures (conventionally Ar-CO₂)
- Depending on the photolithographic techniques used, the GEM foils are classified as Double Mask (DM) or Single Mask (SM) GEM foils

- GEM foil is made of Copper cladded Kapton foil of thickness 60 µm
- Good rate handling capability (~ 1 MHz/mm²)
- High efficiency (>95%)
- Can be operated in cascaded mode
- Good spatial resolution (~ 70 µm)
- Operated with non-flammable gas mixtures (conventionally Ar-CO₂)
- Depending on the photolithographic techniques used, the GEM foils are classified as Double Mask (DM) or Single Mask (SM) GEM foils

7

- GEM foil is made of Copper cladded Kapton foil of thickness 60 µm
- Good rate handling capability (~ 1 MHz/mm²)
- High efficiency (>95%)
- Can be operated in cascaded mode
- Good spatial resolution (~ 70 µm)
- Operated with non-flammable gas mixtures (conventionally Ar-CO₂)
- Depending on the photolithographic techniques used, the GEM foils are classified as Double Mask (DM) or Single Mask (SM) GEM foils

- GEM foil is made of Copper cladded Kapton foil of thickness 60 µm
- Good rate handling capability $(\sim 1 \text{ MHz/mm}^2)$
- High efficiency (>95%)
- Can be operated in cascaded mode

Good spatial resolution (\sim 70 μ m)

- Operated with non-flammable gas mixtures (conventionally $Ar-CO_{2}$)
- Depending on the photolithographic techniques used, the GEM foils are classified as Double Mask (DM) or Single Mask (SM) GEM foils

Reference : F. Sauli, Nucl. Instr. and Meth. A386 (1997) 531, S. Bachmann et al., Nucl. Instr. and Meth. A479 (2002) 294

Multigem gain-discharg

SINGLE GEM

480

AV ON EACH GEM (V)

500

520

440

Triple GEM chamber: Fabrication and prototypes

Components used in the fabrication of triple GEM chamber

Building of a GEM detector

GEM foil

Stretching of the GEM foil

GEM foil on read-out plane

Drift plane is placed

Assembled GEM

Kapton window is placed

Gluing at the bottom

Frame is placed with O-ring

Triple GEM chambers prototype under testing at Bose Institute

Double Mask (DM) triple GEM chamber

Single Mask (SM) triple GEM chamber

Triple GEM chamber prototype under testing at Bose Institute

Characteristics studies of triple GEM prototypes at Bose Institute

Characteristics studies

Schematic of the High Voltage distribution of the SM mask triple GEM chamber of dimension 10×10 cm²

Dimension of the chamber: 10×10 cm²

GEM: SM & DM triple GEM chamber

Source: Same Fe⁵⁵ X-ray (5.9 keV) source is used for irradiation and

monitoring the spectrum

Gas mixture: Ar/CO₂ (Continuous flow mode)

Preamplifier gain: 2 mV/fC (charge sensitive)

Characteristics studies

TTL-S NIM NIM С Scaler Adapter А Linear F GEM -HV F Ο Pre-amplifier MCA Computer

Schematic representation of the electronics setup

Schematic of the High Voltage distribution of the SM mask triple GEM chamber of dimension 10×10 cm²

Dimension of the chamber: 10×10 cm²

GEM: SM & DM triple GEM chamber

Source: Same Fe⁵⁵ X-ray (5.9 keV) source is used for irradiation and

monitoring the spectrum

Gas mixture: Ar/CO₂ (Continuous flow mode)

Preamplifier gain: 2 mV/fC (charge sensitive)

Characteristics studies

Schematic of the High Voltage distribution of the SM mask triple GEM chamber of dimension 10×10 cm²

Dimension of the chamber: $10 \times 10 \text{ cm}^2$

GEM: SM & DM triple GEM chamber

Source: Same Fe⁵⁵ X-ray (5.9 keV) source is used for irradiation and monitoring the spectrum

Gas mixture: Ar/CO₂ (Continuous flow mode)

Preamplifier gain: 2 mV/fC (charge sensitive)

Schematic representation of the electronics setup

Gain, energy resolution & count rate

$$\mathbf{n} = \mathrm{E}_{\mathrm{gamma}}(\frac{\% \text{ of } \mathrm{Ar}}{\mathrm{W}_{\mathrm{Ar}}} + \frac{\% \text{ of } \mathrm{CO}_2}{\mathrm{W}_{\mathrm{CO2}}})$$

For Ar/CO_2 in 70/30 volume ratio, the average number of the primary electrons is 212 with the 5.9 keV X-ray source 19

For Ar/CO_2 in 70/30 volume ratio, the average number of the primary electrons is 212 with the 5.9 keV X-ray source 20

Measurement of efficiency

Efficiency measurement setup; top left: lab setup, bottom: electronic setup

Measurement of uniformity in the characteristics of triple GEM chamber prototypes

Uniformity in gain of a triple GEM chamber

Reference : S. Chatterjee et al., Nucl. Instr. and Meth. A936 (2019) 491, arXiv:2206.10876v1

Uniformity in energy resolution of a triple GEM chamber

Reference : S. Chatterjee *et al.*, Nucl. Instr. and Meth. A936 (2019) 491, arXiv:2206.10876v1

Uniformity in count rate of a triple GEM chamber

Reference : S. Chatterjee et al., Nucl. Instr. and Meth. A936 (2019) 491, arXiv:2206.10876v1

Long-term stability study of triple GEM prototypes

Variation of gain with T/p

- Gain of the chamber can be expressed as e^{α} , where α is the first Townsend coefficient
- Townsend coefficient $\alpha \propto 1/\rho \propto T/p$; $\rho = mass$ density, T = temperature, p = pressure
- Gain of the chamber depends on the variation of T/p
- Gain is normalised using a parameterisation of the form Ae^(BT/p)

S. Chatterjee et al., NIMA 1046, 167747 (2023)

29

Normalised gain & energy resolution vs accumulated charge

$$\frac{dq}{dA} = \frac{r \ x \ n \ x \ e \ x \ G \ x \ dx}{dA}$$

r =rate, n =no of primary electrons, dt =time, e =electronic charge G =gain, dA =irradiated are

Gain and energy resolution is normalised by T/p ratio to nullify the effects of temperature and pressure variations

No significant degradation in normalised gain and energy resolution is observed

Typical accumulated charge for 10 CBM years is ~ 0.8 mC/mm^2 at the gain of 10^3

30

Reference : S. Chatterjee *et al.*, Journal of Physics: Conference Series, 1498 (2020) 012037

Charging-up effect in triple GEM chamber prototypes

Simulated spatial distribution of deposited on the insulator surface of the uncharged and charged GEM foil

- During the multiplication process inside the GEM hole, electrons and ions diffuse to the polyimide part of the GEM and adsorbed there.
- These new charges accumulate over time and dynamically change the electric field inside the hole. This is known as the charging-up effect.
- Those accumulated charges create a lensing effect and as a result, the gain increases for the first few hours of operation.
- After some time when the dynamical equilibrium is reached, the gain reaches asymptotically a constant value.

Reference : P.M.M. Correia et al., 2014 JINST 9 P07025

Charging-up effect in DM GEM

ΔV (V)	Rate (kHz/mm ²)	Charging-up time (hour)	Saturated gain
~ 390	~0.08	2.376(<u>+</u> 0.0165)	~4900
	~0.2	1.524(<u>+</u> 0.0083)	~5100
	~3.2	1.395(<u>+</u> 0.0039)	~5500

- Gain is normalised to eliminate the effects of temperature and pressure
- Normalised gain is fitted with p0 (1 p1e^{-t/p2}), taking analogy from the charging-up of RC network 33

Reference : S. Chatterjee et al., 2020 JINST 15 T09011

Charging-up effect in SM GEM

Reference : S. Chatterjee *et al.*, NIMA 1014 (2021) 165749

Variation in charging-up time with gain

With increasing gain, the charging-up time is reducing as expected

35

Reference : S. Chatterjee *et al.*, NIMA 1014 (2021) 165749

Summary

- Characteristics studies of triple GEM chambers
 - Efficiency of the chamber is measured using cosmic rays
 - Uniformity in performance is investigated in terms of gain, energy resolution and count rate of the chamber using Fe⁵⁵ X-ray source
 - Long-term stability in performance is investigated with different Ar/CO₂ based gas mixtures
- Effect of irradiation on the performance of the chamber
 - The charging-up phenomena is investigated for different irradiation rates and at different gain of the chamber

Thank you for your attention!!!