

Test results (Preliminary) of Real size Station-1 MuCh modules in the nucleusnucleus collisions at mini-CBM experiment at GSI FOR CBM-MuCh COLLABORATION

Speaker: Apar Agarwal (VECC)

Co-Authors: Vikas Singhal (VECC), Chandrasekhar Ghosh (VECC), Vinod Negi (VECC), Jogender Saini (VECC), Dr. Anand K. Dubey (VECC), Ekata Nandy (VECC), Shreya Roy (Bose Institute), Sayak Chatterjee (Bose Institute), Ajit Kumar (NISER), Christian Sturm (GSI), P.A. Loizeau (GSI), D. Emschermann (GSI), Dr. Subhasis Chattopadhyay (VECC)

XXV DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM AT IISER, MOHALI (12-16 DEC '22)

OUTLINE

- INTRODUCTION
 - 1) Compressed Baryonic Matter (CBM) Experiment
 - 2) Basics of Gaseous Electron Multiplier (GEM) Detectors
 - **3) Detector Construction for CBM**
 - 4) miniCBM (mCBM) Experiment
- ABOUT mCBM 2022 CAMPAIGN
- PRELIMINARY TEST RESULTS FROM mCBM 2022
- SUMMARY AND OUTLOOK

PROPOSED CBM SIS-100 EXPERIMENT

- Fixed Target Experiment
- Beam Energy: √s_{NN} = 2.9–
 4.9 AGeV
- Baryon Chemical potential(μ_B): ~540–800 MeV
- Highest Intensity: ~10 MHz

PHYSICS AT CBM

- Aims to study EoS of strongly interacting QCD matter dominated by baryons.
- Search for First-order phase boundary, QCD Critical point, Chiral symmetry restoration, hypernuclear interactions etc.
- Unprecedented Rates will allow to study several rare probes for the first time in this energy range like multistrange (anti-)particles, dileptons, hypernuclei etc.

GEM Detector

- The "standard" GEM foil consists of **50 μm** thin dielectric polymer (polyimide), **5 μm thick metal (copper)** layers are coated on both side of it
- Regular holes of diameter 70 μm with a pitch of 140 μm is created using photo-lithographic technique
- Potential difference between of 500 V (say) applied on the electrodes High electric field ~100 kV/cm
- When a charged particle passes through the active medium, it ionizes gas and creates e-ion pair. These electrons then multiplied inside the holes
- ➢ The amplified electrons gives signal on the readout electrode

Advantages of GEM

- High rate capability
 - High gas gain
- Low discharge probability
 - Good spatial resolution

GEM FOIL

Single GEM

Triple GEM

5

COMPONENTS OF LARGE SIZE GEM MODULE FOR STATION 1 DEVELOPED AT VECC

GEM MODULE ASSEMBLY WITH UPGRADED PCB at VECC

mCBM EXPERIMENT AT SIS-18 AT GSI, GERMANY

- Facilitates testing for all CBM detector prototypes togethor.
- Development of hardware and software capabilities for high rate trigerless data acquisition and analysis.

mCBM CAMPAIGN OF 2022

- U-Au at T = 1.0 AGeV, Ni- (Au & Ni) at T = 1.23 AGeV.
- Highest Rates achieved : 10⁹ ions per spill (~10s).
- Upgraded MuCh Station 1 modules (with opto-couplers in staggered arrangement) tested with CRI based DAQ for the first time.

Geometry for U-Au Run

mCBM 2022 March-April BeamTime

Gem2 Gem1

FEB Layout at mCBM for GEM 1 and GEM 2

WORKING FEBs IN MARCH-APRIL RUNS

PRELIMINARY DATA ANALYSIS RESULTS FROM MARCH-APRIL 2022

U-Au(2.5 mm target) @ T=1.0 AGeV AT mCBM 2022

Voltage (Gem 1, Gem 2)>	4600, 4218	4650, 4266	4700, 4312	4750, 4359	4800, 4402	4850, 4447	4900, 4496	4950, 4543
Intensity (ions/spill)								
10 ⁷		Yes						
5* 10 ⁷					Yes			
10 ⁸			Yes	Yes	Yes	Yes	Yes	Yes
5*10 ⁸					Yes			
10 ⁹	Yes	Yes	Yes	Yes	Yes	Yes		
*Analysed in RED 👝							ED	

LIST OF ANALYSED RUNS FOR U-Au DATA

Run Number	Intensity (ions/spill)	Timeslice length (ms)	Downscaling	Gem 1 Voltage (V)	Gem 2 Voltage (V)
2254	10 ⁷	64.0	10	4800	4402
2256	5*10 ⁷	64.0	10	4800	4402
2257	10 ⁸	64.0	10	4800	4402
2258	5*10 ⁸	64.0	10	4800	4402
2262	10 ⁹	64.0	10	4800	4402

SPILLSTRUCTURES FOR SOME RUNS

PADWISE HIT DISTRIBUTIONS (HIGHEST INTENSITY)

(U-Au @ T= 1.0 AGeV Runs)

SPATIAL CORRELATION GEM 1 vs. GEM 2 (10⁷ Ions/spill)

(U-Au @ T= 1.0 AGeV Runs)

(Time Window : 500 ns)

X-X Correlation

Y-Y Correlation

17

OVERLAPPING ACCEPTANCE IN YELLOW

TIMECORRELATIONS FOR HIGHEST INTENSITY

(U-Au @ T= 1.0 AGeV Runs)

Individual FEB correlations

visible as bands

DIGI CORRELATION (LOWEST AND HIGHEST INTENSITY) (U-Au @ T= 1.0 AGeV Runs)

STUDY OF INTENSITY RESPONSE OF GEM

OUR GOAL IS TO STUDY THE INTENSITY RESPONSE OF GEM WE ACHIEVE THIS BY STUDYING:

- Mean number of digis in runs of different intensities
- Mean number of hits in runs of different intensities

RoadMap to Study Intensity response using mean number of Digis in a Timeslice

nDIGIS PER TIMESLICE (64ms) FOR ALL INTENSITIES (U-Au @ T= 1.0 AGeV Runs)

X -Axis Scales are different!

INTENSITY RESPONSE OF GEM MODULES

(U-Au @ T= 1.0 AGeV Runs)

Event and Hit Reconstruction

10⁷ Ions/spill (U-Au @ T= 1.0 AGeV Runs)

Data Worth 1000 TS

- Criteria for Digi: Nearby Digis in Time interval of 200ns.
- Criteria for Event: 2 MuCh and 10 TOF digis in a window of 200 ns

24

RoadMap to study Intensity Response using Hit and Event Reconstruction

25

nHits PER TIMESLICE (64ms) FOR ALL INTENSITIES (U-Au @ T= 1.0 AGeV Runs)

GEM 1 PRELIMINARY

 10^{7}

5*10⁷ 10⁸ 5*10⁸ 10⁹ Increasing Beam Intensity--> 26

X -Axis Scales are different!

HIT RESPONSE OF GEM MODULES

Some Non Linearity is still observed at Highest Intensity

SUMMARY

- We have achieved stable operation of GEM detector at such high particle rates for the first time.
- Any pre-existing issues with the link stability of the detector have been resolved after upgrades.
- Detector electronics also show stable response.
- The response is largely linear and shows a hint of non linearity only at the highest intensity. This result is still preliminary and further studies are required on this front.

OUTLOOK

- The intensity numbers have been taken from the accelerator but the studies suggest that these numbers might not be correct. Proper estimation of interaction rates will give us the correct response of the detector. We are hoping for a linear response at highest intensities.
- Branch current based studies to estimate detector stability over long periods are to be performed.
- Gain and efficiency estimation needs to be performed.

Recap from previous mCBM Runs

mCBM Runs	MuCh Participation
mCBM 2018	Participated
mCBM 2019	Participated
mCBM 2020	Participated
mCBM 2021	Not Participated

- Communication with ASIC got Lost
- During a Run offset jumps were observed particularly at higher voltages.

time diff of TOF with MUCH Timeslice wise

PCB UPGRADE

Gem1 : Module tested at GIF++ 2022 Gem2 : Module with new drift PCB was build at VECC

SCHEMATIC OF THE HV LAYOUT ON THE DRIFT PCB

- 1. Left half HV layout is identical to the right half. Two resistive chains per module.
- 2. Branch current monitored by HV supply

