Probing non-unitary neutrino mixing using atmospheric neutrinos at INO-ICAL

DAE-BRNS HEP Symposium-2022, 15th December 2022 IISER, Mohali

> Sadashiv Sahoo[†], Sudipta Das Anil Kumar, and Sanjib Kumar Agarwalla

Plan of Talk:

- Introduction & Motivation
- Formalism
- Constrains by upcoming Long baseline experiments
- Atmospheric Neutrino Oscillation
- The Iron Calorimeter @ INO
- Preliminary Results
- Concluding Remark

Introduction & Motivation

					NuFIT 5.1 (2021)	
		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.6)$	$c_{12}c_{13}$ $s_{12}c_{13}$ s_{13}
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	$U_{\rm PMNS}^{\rm orightarrow} = \begin{bmatrix} -s_{12}c_{23} - c_{12}s_{13}s_{23} & c_{12}c_{23} - s_{12}s_{13}s_{23} & c_{13}s_{23} \end{bmatrix}$
	$\sin^2 heta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$s_{12}s_{23} - c_{12}s_{13}c_{23} - c_{12}s_{23} - s_{12}s_{13}c_{23} - c_{13}c_{23}$
date	$ heta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$	
neric	$\sin^2 \theta_{23}$	$0.573\substack{+0.018 \\ -0.023}$	$0.405 \rightarrow 0.620$	$0.578\substack{+0.017\\-0.021}$	$0.410 \rightarrow 0.623$	i=3
lqsot	$ heta_{23}/^{\circ}$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$	$\sum_{U^*} U_{\alpha, \alpha} = \int 1, \alpha = \beta \mid U_{\text{nitarity}} \mid$
t atm	$\sin^2 heta_{13}$	$0.02220^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \rightarrow 0.02434$	$\sum_{j} C_{\alpha j} C_{\beta j} = \begin{bmatrix} 0, & \alpha \neq \beta \end{bmatrix}$
it SK	$\theta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$	J NuFIT 5.1 (2021)
ithou	$\delta_{ m CP}/^{\circ}$	194^{+52}_{-25}	$105 \rightarrow 405$	287^{+27}_{-32}	$192 \rightarrow 361$	
iw	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$ U _{3\sigma}^{\text{w/o SK-atm}} = \begin{pmatrix} 0.801 \to 0.845 & 0.513 \to 0.579 & 0.143 \to 0.156 \\ 0.232 \to 0.507 & 0.459 \to 0.694 & 0.629 \to 0.779 \end{pmatrix}$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.515^{+0.028}_{-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498\substack{+0.028\\-0.029}$	$-2.584 \rightarrow -2.413$	$(0.260 \rightarrow 0.526 \qquad 0.470 \rightarrow 0.702 \qquad 0.609 \rightarrow 0.763)$
		Normal Ordering (best fit)		Inverted Orde	ering $(\Delta \chi^2 = 7.0)$	$(0.801 \rightarrow 0.845 \qquad 0.513 \rightarrow 0.579 \qquad 0.144 \rightarrow 0.156)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	171 with SK-atm = 0.244 + 0.400 = 0.505 + 0.000 = 0.001 + 0.700 = 0.0000 = 0.0000 = 0.00000 = 0.0000000 = 0.00000 = 0.00
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$ U _{3\sigma} = 0.244 \to 0.499 \qquad 0.505 \to 0.693 \qquad 0.631 \to 0.768$
lata	$ heta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	$(0.272 \rightarrow 0.518 \qquad 0.471 \rightarrow 0.669 \qquad 0.623 \rightarrow 0.761)$
eric o	$\sin^2 heta_{23}$	$0.450\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.570\substack{+0.016\\-0.022}$	$0.410 \rightarrow 0.613$	
sphe	$\theta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$	
atmos	$\sin^2 heta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \rightarrow 0.02435$	$0.02241\substack{+0.00074\\-0.00062}$	$0.02055 \rightarrow 0.02457$	IHEP 09 (2020) 178
SK 8	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61_{-0.12}^{+0.14}$	$8.24 \rightarrow 9.02$	JIII (2010) 1/0
with	$\delta_{ m CP}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$	www.nu-fit.org
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490\substack{+0.026\\-0.028}$	$-2.574 \rightarrow -2.410$	4

					NuFIT 5.1 (2021)	
		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.6)$	$v_{12}v_{13} = v_{12}v_{13} = v_{13}$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	$U_{\rm PMNS}^{\circ} = \begin{bmatrix} -s_{12}c_{23} - c_{12}s_{13}s_{23} & c_{12}c_{23} - s_{12}s_{13}s_{23} & c_{13}s_{23} \end{bmatrix}$
	$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$s_{12}s_{23} - c_{12}s_{13}c_{23} - c_{12}s_{23} - s_{12}s_{13}c_{23} - c_{13}c_{23}$
data	$ heta_{12}/^\circ$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$	
heric	$\sin^2 \theta_{23}$	$0.573\substack{+0.018 \\ -0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$	<i>i</i> =3
lqson	$ heta_{23}/^\circ$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$	$\sum U^* U_{\alpha} = \int 1, \alpha = \beta$ Unitarity
K atn	$\sin^2 \theta_{13}$	$0.02220^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \rightarrow 0.02434$	$\sum_{j} \mathcal{O}_{\alpha j} \mathcal{O}_{\beta j} = \left\{ \begin{array}{c} 0, \alpha \neq \beta \end{array} \right. $
ut SK	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$	J NuFIT 5.1 (2021)
ithou	$\delta_{ m CP}/^{\circ}$	194^{+52}_{-25}	$105 \rightarrow 405$	287^{+27}_{-32}	$192 \rightarrow 361$	$(0.801 \rightarrow 0.845 \rightarrow 0.512 \rightarrow 0.570 \rightarrow 0.142 \rightarrow 0.156)$
W	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$ U _{3\sigma}^{\text{w/o SK-atm}} = \begin{pmatrix} 0.801 \to 0.845 & 0.513 \to 0.579 & 0.143 \to 0.156 \\ 0.232 \to 0.507 & 0.459 \to 0.694 & 0.629 \to 0.779 \end{pmatrix}$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.515^{+0.028}_{-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498^{+0.028}_{-0.029}$	-2.584 ightarrow -2.413	$\left(0.260 \to 0.526 \qquad 0.470 \to 0.702 \qquad 0.609 \to 0.763 \right)$
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.0)$		$(0.801 \rightarrow 0.845 \qquad 0.513 \rightarrow 0.579 \qquad 0.144 \rightarrow 0.156)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	171 with SK-atm 0.244 0.400 0.505 0.019 0.000 0.601 0.601
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$ U _{3\sigma}^{\text{index} \text{set all}} = \begin{bmatrix} 0.244 \to 0.499 & 0.505 \to 0.693 & 0.631 \to 0.768 \end{bmatrix}$
lata	$ heta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	$(0.272 \rightarrow 0.518 \qquad 0.471 \rightarrow 0.669 \qquad 0.623 \rightarrow 0.761)$
eric c	$\sin^2 \theta_{23}$	$0.450\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$	
sphe	$ heta_{23}/^{\circ}$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$	
atmc	$\sin^2 \theta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \to 0.02435$	$0.02241\substack{+0.00074\\-0.00062}$	$0.02055 \to 0.02457$	• T2K NOVA KamIAND Dava-Bay RENO and
SK :	$ heta_{13}/^\circ$	$8.62_{-0.12}^{+0.12}$	$8.25 \rightarrow 8.98$	$8.61_{-0.12}^{+0.14}$	$8.24 \rightarrow 9.02$	D 11 cl
with	$\delta_{ m CP}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$	Double-Chooz
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	• Super-K, IceCube (DeepCore)
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$	5

					NuFIT 5.1 (2021)					
		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.6)$	12213 512213 513				
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	$U_{\rm PMNS}^{\circ,\circ} = \begin{bmatrix} -s_{12}c_{23} - c_{12}s_{13}s_{23} & c_{12}c_{23} - s_{12}s_{13}s_{23} & c_{13}s_{23} \end{bmatrix}$				
	$\sin^2 heta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$s_{12}s_{23} - c_{12}s_{13}c_{23} - c_{12}s_{23} - s_{12}s_{13}c_{23} - c_{13}c_{23}$				
heric data	$ heta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$					
	$\sin^2 \theta_{23}$	$0.573\substack{+0.018\\-0.023}$	$0.405 \rightarrow 0.620$	$0.578\substack{+0.017\\-0.021}$	$0.410 \rightarrow 0.623$	i=3				
dsou	$\theta_{23}/^{\circ}$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$	$\sum U^* U_{\alpha} = \begin{cases} 1, & \alpha = \beta \end{bmatrix}$ Unitarity				
ζ atr	$\sin^2 \theta_{13}$	$0.02220^{+0.00068}_{-0.00062}$	$0.02034 \to 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \to 0.02434$	$\sum_{i} \mathcal{O}_{\alpha j} \mathcal{O}_{\beta j} = \left\{ \begin{array}{c} 0, \alpha \neq \beta \end{array} \right. $				
ut SF	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$	ງ NuFIT 5.1 (2021)				
ithou	$\delta_{ m CP}/^{\circ}$	194^{+52}_{-25}	$105 \rightarrow 405$	287^{+27}_{-32}	$192 \rightarrow 361$	$\begin{pmatrix} 0.801 \\ 0.845 \\ 0.513 \\ 0.570 \\ 0.143 \\ 0.156 \end{pmatrix}$				
M	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$ U _{3\sigma}^{\text{w/o SK-atm}} = \begin{pmatrix} 0.301 \rightarrow 0.343 & 0.313 \rightarrow 0.319 & 0.143 \rightarrow 0.130 \\ 0.232 \rightarrow 0.507 & 0.459 \rightarrow 0.694 & 0.629 \rightarrow 0.779 \end{pmatrix}$				
	$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.515^{+0.028}_{-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498\substack{+0.028\\-0.029}$	$-2.584 \rightarrow -2.413$	$\left(0.260 \to 0.526 \qquad 0.470 \to 0.702 \qquad 0.609 \to 0.763 \right)$				
		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.0)$	$(0.801 \rightarrow 0.845 \qquad 0.513 \rightarrow 0.579 \qquad 0.144 \rightarrow 0.156)$				
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	$171 \text{ with SK-atm} \qquad 0.244 + 0.400 \qquad 0.505 + 0.602 \qquad 0.621 + 0.760$				
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$ U _{3\sigma}^{3\sigma} = 0.244 \to 0.499 \qquad 0.505 \to 0.093 \qquad 0.631 \to 0.708$				
lata	$\theta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	$(0.272 \rightarrow 0.518 \qquad 0.471 \rightarrow 0.669 \qquad 0.623 \rightarrow 0.761)$				
eric o	$\sin^2 \theta_{23}$	$0.450^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$					
sph_{0}	$\theta_{23}/^{\circ}$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$					
atmo	$\sin^2 heta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \rightarrow 0.02435$	$0.02241\substack{+0.00074\\-0.00062}$	0.02055 o 0.02457	• Next Gen y-detectors are now able to detect all				
Ϋ́	$ heta_{13}/^\circ$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61^{+0.14}_{-0.12}$	$8.24 \rightarrow 9.02$	Next Och. V detectors are now able to detect an				
with S	$\delta_{ m CP}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$	flavours of neutrinos (ν_e , ν_μ , ν_τ). These give				
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	opportunities to measure all osc. channels.				
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$	6				

$$U_{n \times n} = \begin{pmatrix} N & S \\ V & T \end{pmatrix} \qquad H_{n \times n}^m = \frac{1}{2E} \cdot \begin{bmatrix} \delta m^2 & 0 \\ 0 & \Delta M^2 \end{bmatrix}_{n \times n}$$

JHEP 04 (2011) 123

8

$$\begin{split} H_{n\times n}^{m} &= \frac{1}{2E} \cdot \begin{bmatrix} \delta m^{2} & 0 \\ 0 & \Delta M^{2} \end{bmatrix}_{n\times n} \\ & \delta m^{2} = \begin{bmatrix} \Delta m_{41}^{2} & 0 & 0 & 0 & 0 \\ 0 & \Delta m_{51}^{2} & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \Delta m_{n1}^{2} \end{bmatrix}_{(n-3)\times(n-3)} \end{split}$$

$$m_i \ll E$$
 and $\Delta m_{ij}^2 \ll E$

9

$$H_{n \times n}^{f} = \left(\begin{array}{cc} N & S \\ V & T \end{array}\right) \ \cdot \frac{1}{2E} \cdot \left(\begin{array}{cc} \delta m^{2} & 0 \\ 0 & \Delta M^{2} \end{array}\right) \ \cdot \left(\begin{array}{cc} N^{\dagger} & V^{\dagger} \\ S^{\dagger} & T^{\dagger} \end{array}\right)$$

$$H_{n \times n}^{f} = \begin{pmatrix} N & S \\ V & T \end{pmatrix} \cdot \frac{1}{2E} \cdot \begin{pmatrix} \delta m^{2} & 0 \\ 0 & \Delta M^{2} \end{pmatrix} \cdot \begin{pmatrix} N^{\dagger} & V^{\dagger} \\ S^{\dagger} & T^{\dagger} \end{pmatrix}$$

$$We \text{ have only access to neutrinos} \text{ by detecting neutrinos } (v_{e}, v_{\mu}, v_{\tau}) \text{ via their} \text{ charged cousins.}$$

$$We \text{ have only access to neutrinos} \text{ by detecting neutrinos} (v_{e}, v_{\mu}, v_{\tau}) \text{ via their} \text{ charged cousins.}$$

$$We \text{ have only access to neutrinos} \text{ by detecting neutrinos} (v_{e}, v_{\mu}, v_{\tau}) \text{ via their} \text{ charged cousins.}$$

This limitation invokes **non-unitary neutrino mixing** (NUNM) at light three neutrino mixings

Formalism

Formalism

Using Okubo's notation

 $U_{n \times n} = \omega_{n-1\,n} \,\omega_{n-2\,n} \,\dots \,\omega_{3\,n} \,\omega_{2\,n} \,\omega_{1\,n} \,\omega_{n-2\,n-1} \,\dots \,\omega_{3\,n-1} \,\omega_{2\,n-1} \,\omega_{1\,n-1} \,\dots \,\omega_{2\,3} \,\omega_{1\,3} \,\omega_{1\,2}$

Prog. Theor. Phys. 28, 24 (1962)

Using Okubo's notation

 $U_{n \times n} = \omega_{n-1\,n} \,\omega_{n-2\,n} \,\dots \,\omega_{3\,n} \,\omega_{2\,n} \,\omega_{1\,n} \,\omega_{n-2\,n-1} \,\dots \,\omega_{3\,n-1} \,\omega_{2\,n-1} \,\omega_{1\,n-1} \,\dots \,\omega_{2\,3} \,\omega_{1\,3} \,\omega_{1\,2}$

$$U_{3\times3} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \omega_{23} \omega_{13} \omega_{12}$$
$$U_{3\times3} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \widetilde{U}_{3\times3} \quad \text{PMNS Matrix}$$

Prog. Theor. Phys. 28, 24 (1962)

Effective Hamiltonian in three neutrino scenario :

$$N = \alpha \cdot \widetilde{U}$$

In principle α can be complex quantity

$$\alpha = \begin{pmatrix} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

$$\mathcal{H}_{\nu_{\rm L}} = \frac{1}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} + N^{\dagger} \begin{bmatrix} \sqrt{2}G_F \begin{pmatrix} N_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \frac{G_F}{\sqrt{2}} \begin{pmatrix} N_n & 0 & 0 \\ 0 & N_n & 0 \\ 0 & 0 & N_n \end{pmatrix} \end{bmatrix} N$$
$$N^{\dagger} \cdot N \neq I$$

arXiv: 1102.3432

arXiv: 1503.08879

Effective Hamiltonian in three neutrino scenario :

$$N = \alpha \cdot \widetilde{U}$$

$$\alpha = \begin{pmatrix} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

$$\mathcal{H}_{\nu_{\rm L}} = \frac{1}{2E} \begin{pmatrix} 0 & 0 & 0\\ 0 & \Delta m_{21}^2 & 0\\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} + N^{\dagger} \begin{bmatrix} \sqrt{2}G_F \begin{pmatrix} N_e & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} - \frac{G_F}{\sqrt{2}} \begin{pmatrix} N_n & 0 & 0\\ 0 & N_n & 0\\ 0 & 0 & N_n \end{pmatrix} \end{bmatrix} N$$
$$N^{\dagger} \cdot N \neq I$$

arXiv: 1102.3432

arXiv: 1503.08879

Effective Hamiltonian in three neutrino scenario :

$$N = \alpha \cdot \widetilde{U}$$

$$\alpha = \begin{pmatrix} \alpha_{11} & 0 & 0\\ \alpha_{21} & \alpha_{22} & 0\\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

$$\begin{aligned} \mathcal{H}_{\nu_{\rm L}} &= \frac{1}{2E} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{array} \right) + N^{\dagger} \left[\sqrt{2}G_F \left(\begin{array}{ccc} N_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) - \frac{G_F}{\sqrt{2}} \left(\begin{array}{ccc} N_n & 0 & 0 \\ 0 & N_n & 0 \\ 0 & 0 & N_n \end{array} \right) \right] N \\ N^{\dagger} \cdot N \neq I \\ \text{For } \bar{\nu} : \sqrt{2}G_F N_e \rightarrow -\sqrt{2}G_F N_e \ ; \ -\frac{G_F}{\sqrt{2}} N_n \rightarrow +\frac{G_F}{\sqrt{2}} N_n \end{aligned}$$

Effective survival Probability in three neutrino scenario :

$$\mathcal{H} = \frac{1}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} + N^{\dagger} \begin{bmatrix} \sqrt{2}G_F \begin{pmatrix} N_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \frac{G_F}{\sqrt{2}} \begin{pmatrix} N_n & 0 & 0 \\ 0 & N_n & 0 \\ 0 & 0 & N_n \end{pmatrix} \end{bmatrix} N$$

$$P\left(\nu_{\alpha} \to \nu_{\beta}\right) = \left| \left(N \cdot e^{-iHL} \cdot N^{\dagger} \right)_{\beta\alpha} \right|^{2}$$

Effective survival Probability in three neutrino scenario :

$$P\left(\nu_{\mu} \to \nu_{\mu}\right)\left(L\right)\Big|_{\theta_{23}=\pi/4} = \left|\frac{1}{2} \cdot e^{-i\cdot\lambda_{1}\cdot L} \cdot \left[\left(1 + e^{i\cdot\Delta\lambda\cdot L}\right)\right]\right|^{2}$$

$$\frac{\Delta\lambda}{2} \simeq \frac{\Delta m_{32}^2}{4E} + V_{NC} \cdot \alpha_{32} \cdot \sin 2\theta_{23}$$

 λ_1 : is One of the Eigenvalues

$$P\left(\nu_{\mu} \to \nu_{\mu}\right)\left(L\right)\Big|_{\theta_{23}=\pi/4} = \cos^{2}\left[\left(\frac{\Delta m_{32}^{2}}{4E} + V_{NC} \cdot \alpha_{32}\right) \cdot L\right]$$

Constraints by upcoming Long baseline experiments

Future Constraints on α_{32} by LBL

$90\%\mathrm{C.L.}$	DUNE	JD	KD	JD+KD	JD+KD+DUNE	$T2K+NO\nu A$
$ \alpha_{32} $	< 0.33	< 1.2	< 0.85	< 0.71	< 0.27	< 1.4

- DUNE : Deep Underground Neutrino Experiment
- JD : Japanese Detector [Tokai to Hyper-Kamiokande (T2HK)]
- KD : Korean Detector [Tokai to Korean Detector]
- NOvA : NuMI Off-axis ve Appearance
- T2K : Tokai to Super-Kamiokande

Here, authors min. Over ϕ_{32} for the following convention $|R| \cdot e^{-i\phi}$

arXiv: 2111.00329

Oscillogram with a benchmarking value of $\alpha_{32} = \pm 0.25$

Benchmark Oscillation Parameters for This Work

$\sin^2 2\theta_{12}$	$\sin^2 heta_{23}$	$\sin^2 2\theta_{13}$	$\Delta m_{\rm eff}^2 ~({\rm eV}^2)$	$\Delta m_{21}^2 \ ({\rm eV}^2)$	$\delta_{ m CP}$	Mass Ordering
0.855	0.5	0.0875	2.49×10^{-3}	7.4×10^{-5}	0	Normal (NO)

JHEP 03 (2022) 050

Effect of α_{32} on Muon Survival Channel

Iron-Calorimeter detector at INO

- 50 kt Magnetized Iron Calorimeter (ICAL) of Field strength ~ 1.3 Tesla, enables to distinguish atmospheric neutrino and antineutrino events, separately.
- It has ~10% resolution of muon momentum ranging 1-25 GeV and ~1° zenith angle resolution over 15-12800 km range of baselines

ICAL Event distributions with $\alpha_{32} = \pm 0.25$

- NUANCE MC Generator using Neutrino Flux (Honda) at INO site
- Three-Flavour Oscillation Framework; PREM profile; 500 kt·yr (10 yr)
- Migration matrices from ICAL-Geant4 simulation [arXiv:1304.5115, 1405.7243]
- Binning scheme is adopted from JHEP 03 (2022) 050

Observable	Range	Bin width	Total bins
	[1, 11]	1	10
$E_{\mu}^{\rm rec} ({\rm GeV})$	[11, 21]	5	2 > 13
,	[21, 25]	4	1
and Arec	[-1.0, 0.0]	0.1	10 15
$ \cos v_{\mu}$	[0.0, 1.0]	0.2	$5\int 10$
	[0,2]	1	2
$E'_{\rm had}^{\rm rec} ({\rm GeV})$	[2,4]	2	1 > 4
	[4, 25]	21	1

Impact of α_{32} on reconstructed muon events:

Impact of α_{32} on reconstructed muon events:

Impact of α_{32} on reconstructed muon events:

Preliminary results on α_{32}

Method of χ^2 Analysis:

$$\chi_{\pm}^{2} = \min_{\zeta_{l}} \sum_{i=1}^{N_{E_{\text{had}}}} \sum_{j=1}^{N_{E_{\mu}\pm}} \sum_{k=1}^{N_{\cos}\theta_{\mu}} 2\left[N_{ijk}^{\text{test}} - N_{ijk}^{\text{true}} - N_{ijk}^{\text{true}} \ln\left(\frac{N_{ijk}^{\text{test}}}{N_{ijk}^{\text{true}}}\right)\right] + \sum_{l=1}^{5} \zeta_{l}^{2}$$

$$N_{ijk}^{\text{test}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \zeta_l \right);$$

arXiv:1406.3689v1

- Flux Normalization Error = 20%
- Interaction Cross-section Error = 10%
- Tilt Error = 5%
- Zenith Error = 5%
- Overall Systematic Error = 5%

90% C.L.	DUNE	JD	KD	JD+KD	JD+KD+DUNE	$T2K+NO\nu A$
$ lpha_{32} $	< 0.33	< 1.2	< 0.85	< 0.71	< 0.27	< 1.4

arXiv: 2111.00329

This Work

Impact of ϕ_{32} on constraining $ \alpha_{32} $ at 95% C.L.						
Type	DUNE	ICAL				
$\phi_{32} = 0 \text{ (fixed)}$	0.034	0.022				
$\phi_{32} \in [-\pi, \pi] \text{ (free)}$	0.241	0.119				

Keeping all oscillation parameters and min. Condition same for ICAL and DUNE

Impact of θ_{23} (true) on $\Delta \chi^2$ analysis

- For the first time, we have probed the concept of NUNM using atmospheric neutrinos.
- We have explored the impact of neutral-current, playing a crucial to get sensitivity for NUNM parameters.
- We show that how having CID information can improve the constraint of NUNM parameter of the atmospheric detector like INO-ICAL.
- We have explored the sensitivity of NUNM for θ_{23} uncertainties

- We believe, existing high precision data from Super-K, IceCube (DeepCore), KM3NET can certainly improves bound on the NUMM parameters
- ICAL with its CID capability places a competitive bound as compared to next-generation long-baseline experiments.

Thank You

Back Up

Example in 4 x 4 Unitarity Neutrino Mixing

$$U^{4 \times 4} = R_{34} \cdot R_{24} \cdot R_{14} \cdot R_{23} \cdot R_{13} \cdot R_{12}$$

$$U^{4 \times 4} = R_{34} \cdot R_{24} \cdot R_{14} \cdot U^{3 \times 3}$$

Using Okubo's notation

$$R_{34} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{34} & -s_{34} \\ 0 & 0 & s_{34} & c_{34} \end{pmatrix}, \quad R_{24} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{24} & 0 & -s_{24} \\ 0 & 0 & 1 & 0 \\ 0 & s_{24} & 0 & c_{24} \end{pmatrix}$$

$$R_{14} = \begin{pmatrix} c_{14} & 0 & 0 & -s_{24} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ s_{24} & 0 & 0 & c_{24} \end{pmatrix},$$

,

$$R_{34} \cdot R_{24} \cdot R_{14} = \begin{pmatrix} c_{14} & 0 & 0 & s_{14} \\ -s_{14}s_{24} & c_{24} & 0 & c_{14}s_{24} \\ -c_{24}s_{14}s_{34} & -s_{24}s_{34} & c_{34} & c_{14}c_{24}s_{34} \\ -c_{24}s_{14}s_{34} & -s_{24}s_{34} & -s_{34} & c_{14}c_{24}c_{34} \end{pmatrix}$$

Formalism & Conventions :

$$R_{34} \cdot R_{24} \cdot R_{14} = \begin{pmatrix} c_{14} & 0 & 0 \\ -s_{14}s_{24} & c_{24} & 0 \\ -c_{24}s_{14}s_{34} & -s_{24}s_{34} & c_{34} \\ -c_{24}s_{14}s_{34} & -s_{24}s_{34} & -s_{34} \\ -c_{24}s_{14}s_{34} & -s_{24}s_{34} & -s_{34} \\ -c_{24}s_{14}s_{34} & -s_{24}s_{34} & -s_{34} \\ Lower Triangular Matrix \end{pmatrix}$$

