

Latest Results from the NOvA Experiment

Richa Sharma Panjab University, Chandigarh For the NOvA Collaboration

XXV DAE-BRNS HEP SYMPOSIUM 12 - 16 DECEMBER 2022 IISER , Mohali

Standard Picture of 3 Flavor Mixing

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} c_{ij} = \cos \theta_{ij} \\ c_{ij} = \sin \theta_{ij} \end{bmatrix}$$

Oscillation frequencies proportional to mass square splittings.

$$P_{\alpha \to \beta} = \delta_{\alpha \beta}$$

-4 $\sum_{i>j} Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2\left(1.27 \frac{\Delta m_{ij}^2 L}{E}\right)$
+2 $\sum_{i>j} Im(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin\left(1.27 \frac{\Delta m_{ij}^2 L}{E}\right)$

Current knowledge, from global fit to oscillation data

 $\sin^2 \theta_{23} = 0.573^{+0.018}_{-0.023}$ $\sin^2 \theta_{13} = 0.02220^{+0.00068}_{-0.00062}$ $\sin^2 \theta_{12} = 0.304^{+0.013}_{-0.012}$

NuFIT 5.1 (2021), www.nu-fit.org JHEP 09 (2020) 178 [arXiv:2007.14792]

Dr. Richa Sharma

2

Questions Addressed in this Talk

What is the neutrino mass ordering

 Is the 3-flavour oscillation model the full picture?
 sterile neutrinos?

- θ₂₃ ≠ 45°? ν_µ or ν_τ couples more strongly to ν₃
- sin(δ_{CP}) = 0 or ≠ 0? Do neutrinos exhibit CP violation?

NUMI Off-Axis Narrow Band Beam

РОТ Neutrino beam Antineutrino beam NOvA Simulation 10¹³ | NOvA Far det. NOvA Far det. × Events 1-5 GeV Events 1-5 GeV S -GeV 96% v, 15% ν_{μ} _ Events / kton 3% $\bar{\nu}_{\mu}$ 84% $\bar{\nu}_{\mu}$ $1\% v_{o}$ $1\% v_{o}$ S 10⁻⁶ (Neutrino energy (GeV) Neutrino energy (GeV) 12.7×10²⁰ protons on target 23.2×10^{20} +(antineutrino mode) (neutrino mode)

Far Detector simulated spectra assuming no oscillations

Two-detector experiment Off-axis narrow band beam

897 kW beam power demonstrated in 2022

13 Dec 2022

NOvA Detectors

Dr. Richa Sharma

214 planes

13 Dec 2022

Events in the Detectors

- NOvA uses Convolutional Visual Network (CVN) (implementation of Convolutional Neural Network (CNN)) to classify events:
 - $^{\triangleright}$ classify events into $\nu_{e}CC, \ \nu_{\mu}$ CC, NC or cosmogenic.
 - The scores of the CNN are used to form two independent samples of neutrinos and antineutrino events.

Oscillation Analysis Results

Illustration by Fermilab

ND Data

- Both neutrino and antineutrino mode data used. (Analysed Exposure: 13.6×10²⁰ neutrino mode 12.5×10²⁰ antineutrino mode (POT))
- Simulated ND spectra corrected to ND data and extrapolated to FD. Extrapolation accounts for
 - Energy Smearing
 - Acceptance and selection efficiency
 - · Beam divergence
- Data-driven FD predictions for
 - $\cdot \,\, {m v}_{\!\mu}$ ($\,\, \overline{{m v}}_{\!\mu}$) disappearance
 - $\cdot \,\, {\it V}_e$ (${\it \overline{V}}_e$) appearance
 - · Beam backgrounds

FD Data

13 Dec 2022

Results

- Markov Chain Monte Carlo Bayesian Analysis
 - Conclusions the same as frequentist results
- Weak preference for Normal Ordering, Upper $\theta_{_{23}}$ Octant
- The inverted mass ordering with $\delta_{CP} = \pi/2$ is excluded at more than 3σ ; normal ordering with $\delta_{CP} = 3\pi/2$ is disfavored at 2σ

Appearance Asymmetry

Defined as $\frac{P(\nu_{e})-P(\overline{\nu}_{e})}{P(\nu_{e})+P(\overline{\nu}_{e})}$

No $v_e - \overline{v}_e$ asymmetry to 25% precision

Disfavour mass ordering- δ CP combinations with large asymmetry

NOvA-only θ_{13} vs θ_{23}

- Bayesian framework makes this type of analysis very easy.
- Larger 13 would favour lower octant for 23 and vice versa

$$\sin^2 \theta_{13} = 0.085^{+0.020}_{-0.016}$$

• Consistent with much more precise measurements from reactor experiments

Jarlskog Invariant

- Jarlskog invariant: measures of CP-violation independent of parametrization of PMNS matrix
- Of interest to theorists
- J=0: CP-Conservation. J≠0: CP-Violation

Sterile Neutrino Search

Sterile Neutrino Oscillations at NOvA

 $v_{\mu}CC$ disappearance:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^{2} 2\theta_{23} \sin^{2} \Delta_{31} + 2 \sin^{2} 2\theta_{23} \sin^{2} \theta_{24} \sin^{2} \Delta_{31} - \sin^{2} 2\theta_{24} \sin^{2} \Delta_{41}.$$

NC disappearance:

$$1 - P(\nu_{\mu} \to \nu_{s}) \approx 1 - \cos^{4} \theta_{14} \cos^{2} \theta_{34} \sin^{2} 2\theta_{24} \sin^{2} \Delta_{41} - \sin^{2} \theta_{34} \sin^{2} 2\theta_{23} \sin^{2} \Delta_{31} + \frac{1}{2} \sin \delta_{24} \sin \theta_{24} \sin 2\theta_{23} \sin \Delta_{31}.$$

- add 4th mass eigenstate
- 3+1 model

Additional mixing driven by two angles and one phase NC disappearance allowed, inconsistent with standard oscillations

Sterile Neutrino Search

- New sterile v search using neutrino beam data
- Can probe a wide Δm_{41}^2 range

Oscillations allowed in both detectors simultaneously

- Include new neutrino interaction type, neutral current + v_{μ} charged current
 - Fit ND and FD simultaneously
 - Covariance matrix fit to 3+1 sterile v model
 - Dedicated systematics to reduce dependence on (possibly oscillated) neutrino data

Data used in Sterile Neutrino Search

Nearly identical best fits to 3-flavor and 3+1 models

Sterile Neutrinos - Results

Data shows no evidence for sterile neutrinos

• Competitive limits on θ_{24} for $\Delta m_{41}^2 \sim 10 \text{ eV}^2$

Summary

- Measured $\sin^2 \theta_{13} = 0.085^{+0.020}_{-0.016}$
 - Consistent with reactor experiments
- Appearance symmetry consistent with zero to 25% precision.
- No preference for CP conservation or violation
- Data shows no evidence for a sterile neutrino
- More to come:
 - NOvA T2K joint fit in progress
 - We've already taken a lot more data
 - continue to take data through 2026.
 - Many improvements to oscillation analyses, new cross section measurements & exotic searches in progress!

The NOvA Collaboration

Thank You!

Frequentist vs Bayesian

Frequentist vs Bayesian

Neutrino Interaction Types

NovA can study all interaction types with huge statistics

- Nuclear effects are significant
- Contribution of axial part of weak interaction can only be studied with neutrinos

 Better understanding important for in reducing systematics on oscillation measurements

Two new v_{μ} CC Cross Section Results

Both double differential

Two new v_{μ} CC Cross Section Results

Both focus on sensitivity to 2p2h / MEC events

Both build on previous v_{μ} CC inclusive meas. (arXiv:2109.12220)

Muon System

- Events must have exactly one reconstructed track (low E_{had})
 - Boosts 2p2h, reduces DIS and RES

×10³

Selected events

- Cross section reported at 115 kinematic points
 - 12-15% uncertainty typically
 - dominated by flux systematic

0.7 0.75 0.8 Reco Cosθ₁₁

0.85

0.9 0.95

Dr. Richa Sharma

NOvA Preliminary

events

0.5 0.55 0.6 0.65

(GeV)

Reco T_µ

S University

0 1 0.6

Hadronic System

- NOvA's first measurement in $|\vec{q}|$ and E_{Avail}
 - 2p2h concentrated at low values
- Cross section reported at 67 kinematic points
 - ~12% uncertainty typically
 - dominated by flux systematic

13 Dec 2022

30

Comparison of 2p2h Models to Data

- Large χ^2 values seen for all 2p2h models/tunes
- Tuned models match data better than Valencia/SuSA-v2

2p2h Model	χ² (115 d.o.f.)	
GENIE v2-12.2 NOvA Tune	200	Tuned models
Empirical MEC	190	
Valencia w/ MINERvA Tune	340	
Valencia	630	Theoretical
SuSA - v2	620	models

Muon System

- Hadronic System analysis suggests similar conclusions
- χ^2 calculated for data vs. simulation with the various 2p2h models using full covariance matrix
- Correlations between bins are dominant contribution to χ^2
- Data release for these high-statistics analyses coming soon
 - Can explore many aspects of generator models beyond 2p2h with this data