Sterile neutrino searches with a Deuterated Liquid Scintillator

Suprabh Prakash
Institute of Mathematical Sciences
Chennai, India

Ongoing work in collaboration with D. Bhatia, D. Indumathi, V. Datar and M.V.N. Murthy

DAE BRNS HEP SYMPOSIUM 2022, IISER Mohali

Outline

* Short baselines anomalies and sterile neutrinos
* Two flavor neutrino oscillation probabilities
* Deuterated liquid scintillator
* Sterile neutrino searches
* Challenges with background events

Short-baseline anomalies

A bunch of unaccounted flavor transitions when neutrino travel short distances !

- Observed/predicted averaged event ratio: $\mathbf{R}=0.927 \pm 0.023$ (3.0 σ)

Sterile neutrino

* For the baselines and neutrino energies of the short-baseline experiments, the data cannot be explained by oscillations due to the solar or atmospheric mass-squared differences.
* The measurement of the invisible decay width of the Z boson limits the number of light SM active neutrinos to $N_{\nu}=2.9840 \pm 0.0082$.
* The simplest way to explain the SBL anomalies is to assume the existence of new light neutrinos which are similar to active neutrinos in masses, mixings except that they do not undergo weak interactions.
* Conventionally, these new neutrinos have been called "Sterile". Sterile neutrinos are SM singlets.
* SBL anomalies can be explained if Active and Sterile neutrinos are mixed. In the simplest case of the $3+1$ model, a sterile neutrino of mass $\sim 1 \mathrm{eV}$ is needed along with the 3 active neutrinos.

Probabilities in two flavors

$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(\vec{x}, t)\right\rangle\right|^{2}$

Assumption 1: All energy eigenstates are produced with the same 3 -momentum i.e. $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}$

Assumption 2: Neutrinos
are relativistic i.e.
(1) $t=T=L$
(2) $E_{i}=p+m_{i}^{2} / 2 p$

$P\left(\nu_{e} \rightarrow \nu_{e}\right)=1-\sin ^{2} 2 \theta \sin ^{2} \frac{\Delta m^{2} L}{4 E_{\nu}}$

Type of experiment	L	E	Δm^{2} sensitivity
Reactor SBL	$\sim 10 \mathrm{~m}$	$\sim 1 \mathrm{MeV}$	$\sim 0.1 \mathrm{eV}^{2}$
Accelerator SBL (Pion DIF)	$\sim 1 \mathrm{~km}$	$\gtrsim 1 \mathrm{GeV}$	$\gtrsim 1 \mathrm{eV}^{2}$
Accelerator SBL (Muon DAR)	$\sim 10 \mathrm{~m}$	$\sim 10 \mathrm{MeV}$	$\sim 1 \mathrm{eV}^{2}$
Accelerator SBL (Beam Dump)	$\sim 1 \mathrm{~km}$	$\sim 10^{2} \mathrm{GeV}$	$\sim 10^{2} \mathrm{eV}^{2}$
Reactor LBL	$\sim 1 \mathrm{~km}$	$\sim 1 \mathrm{MeV}$	$\sim 10^{-3} \mathrm{eV}^{2}$
Accelerator LBL	$\sim 10^{3} \mathrm{~km}$	$\gtrsim 1 \mathrm{GeV}$	$\gtrsim 10^{-3} \mathrm{eV}^{2}$
ATM	$20-10^{4} \mathrm{~km}$	$0.5-10^{2} \mathrm{GeV}$	$\sim 10^{-4} \mathrm{eV}^{2}$
Reactor VLB	$\sim 10^{2} \mathrm{~km}$	$\sim 1 \mathrm{MeV}$	$\sim 10^{-5} \mathrm{eV}^{2}$
Accelerator VLB	$\sim 10^{4} \mathrm{~km}$	$\gtrsim 1 \mathrm{GeV}$	$\gtrsim 10^{-4} \mathrm{eV}^{2}$
SOL	$\sim 10^{11} \mathrm{~km}$	$0.2-15 \mathrm{MeV}$	$\sim 10^{-12} \mathrm{eV}^{2}$

Reactor antineutrino fluxes

As an example: Kudankulam Nuclear Power Plant

* Tirunelveli, Tamil Nadu
* Pressurized light-water reactors
* Total 6 units commissioned -2 operational and 4 more to be built by 2027
* Power of each unit: 3 GWth

$$
\begin{aligned}
\phi\left(E_{\nu}\right)= & f_{235 U} \exp \left(0.870-0.160 E_{\nu}-0.091 E_{\nu}^{2}\right) \\
& +f_{239 P_{u}} \exp \left(0.896-0.239 E_{\nu}-0.0981 E_{\nu}^{2}\right) \\
& +f_{238 U} \exp \left(0.976-0.162 E_{\nu}-0.0790 E_{\nu}^{2}\right) \\
& +f_{241 P_{u}} \exp \left(0.793-0.080 E_{\nu}-0.1085 E_{\nu}^{2}\right)
\end{aligned}
$$

Phys. Rev. D 39 (1989) 3378

For a PWR type reactor:
$f_{235_{U}}=0.58, f_{23 P_{P u}}=0.30, f_{238_{U}}=0.07, f_{241_{P u}}=0.05$
(changes with time)

Huber-Mueller Fluxes

Phys. Rev. C 83 (2011) 054615
Phys. Rev. C 84 (2011) 024617

Deuterated Liquid Scintillator

* We consider a liquid scintillator which is 100% deuterated such as $\mathrm{C}_{\mathrm{n}} \mathrm{D}_{2 \mathrm{n}}$
* A deuterated liquid scintillator (DLS) will be sensitive to all neutrino flavors. Therefore, it can see both CC and NC events.
* SNO experiments could conclusively establish neutrino oscillations by observing both CC and NC events. However, it could only do a counting experiment.
* As India is one of largest producer of heavy water, availability of deuterium is not a problem.
* DLS can detect neutrinos mainly via. dissociation of the deuteron.
* Observing NC events in addition to CC events cannot provide crucial information regarding non-unitarity of the 3x3 PMNS matrix - especially in new physics scenarios with sterile neutrinos.
* DLS may be able to provide spectral information of the NC events in addition to total rates.
* However, it comes with its own set of challenges - especially with respect to background suppression and observation of scintillation signal at very low energies.

Gross Sections on Deuterium

https://github.com/bhvzchhn/NeutrinoDeuteron

Charged Current:

$$
\bar{\nu}+(p n) \rightarrow e^{+}+n+n
$$

Neutral Current:

$$
\bar{\nu}+(p n) \rightarrow \bar{\nu}+p+n \underset{\text { missed }}{\substack{\text { scintillation }}}
$$

Probability plots

At near detector distances: $\mathrm{P}_{\mathrm{ee}} \approx \mathrm{P}_{\mathrm{ee}}+\mathrm{P}_{\mathrm{e} \mu}+\mathrm{P}_{\mathrm{e} \tau} \approx 1-\mathrm{P}_{\mathrm{es}} \Longrightarrow$ 2-neutrino oscillation: θ_{14} and Δm_{41}^{2}

Insensitive to Earth matter, mass ordering, octant or CP violation
Full 4-flavor effects only at far detector: sensitivity to additional oscillation parameters

Events plots

Visible Energy:
For CC: e^{+}
ForNC: p

NC events pile up
between $0.0-3.5 \mathrm{MeV}$
Δm^{2} and $\sin ^{2} 2 \theta$ - driven features in both NC and CC spectra

Sterile neutrino exclusion sensitivity

Challenges with background events

* Below 200 KeV , the scintillation from radioactive C inundate the detector
* Other radioactive impurities of heavier elements can also produce photons that can dissociate the deuterium - problem for NC events
* Main problem in case of neutron tagging is cosmic muon induced backgrounds.
* Possible to mitigate via:
a) muon veto detector
b) timing information of the muon events via. plastic scintillators
c) going underground
d) statistical subtraction using reactor downtime
* Millisecond window between prompt event neutron capture

Concluding remarks

Back up slides

$$
\begin{aligned}
P_{\nu_{e} \rightarrow \nu_{e}} & =1-4\left(1-\left|U_{e 4}\right|^{2}\right)\left|U_{e 4}\right|^{2} \sin ^{2}\left(1.27 \Delta m_{41}^{2} L / E\right) \\
P_{\nu_{\mu} \rightarrow \nu_{\mu}} & =1-4\left(1-\left|U_{\mu 4}\right|^{2}\right)\left|U_{\mu 4}\right|^{2} \sin ^{2}\left(1.27 \Delta m_{41}^{2} L / E\right) \\
P_{\nu_{\mu} \rightarrow \nu_{e}} & =4\left|U_{\mu 4}\right|^{2}\left|U_{e 4}\right|^{2} \sin ^{2}\left(1.27 \Delta m_{41}^{2} L / E\right)
\end{aligned}
$$

$$
\begin{aligned}
\sin ^{2} 2 \theta_{e e} & =4\left(1-\left|U_{e 4}\right|^{2}\right)\left|U_{e 4}\right|^{2} \\
\sin ^{2} 2 \theta_{\mu \mu} & =4\left(1-\left|U_{\mu 4}\right|^{2}\right)\left|U_{\mu 4}\right|^{2} \\
\sin ^{2} 2 \theta_{\mu e} & =4\left|U_{\mu 4}\right|^{2}\left|U_{e 4}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\hline \sin ^{2} 2 \theta_{e e}=\sin ^{2} 2 \theta_{14} & =4\left(1-\left|U_{e 4}\right|^{2}\right)\left|U_{e 4}\right|^{2} \\
\sin ^{2} 2 \theta_{\mu \mu}=4 \cos ^{2} \theta_{14} \sin ^{2} \theta_{24}\left(1-\cos ^{2} \theta_{14} \sin ^{2} \theta_{24}\right) & =4\left(1-\left|U_{\mu 4}\right|^{2}\right)\left|U_{\mu 4}\right|^{2} \\
\sin ^{2} 2 \theta_{\tau \tau}=4 \cos ^{2} \theta_{14} \cos ^{2} \theta_{24} \sin ^{2} \theta_{34}\left(1-\cos ^{2} \theta_{14} \cos ^{2} \theta_{24} \sin ^{2} \theta_{34}\right) & =4\left(1-\left|U_{\tau 4}\right|^{2}\right)\left|U_{\tau 4}\right|^{2} \\
\sin ^{2} 2 \theta_{\mu e}=\sin ^{2} 2 \theta_{14} \sin ^{2} \theta_{24} & =4\left|U_{\mu 4}\right|^{2}\left|U_{e 4}\right|^{2} \\
\sin ^{2} 2 \theta_{e \tau} & =\sin ^{2} 2 \theta_{14} \cos ^{2} \theta_{24} \sin ^{2} \theta_{34} \\
\sin ^{2} 2 \theta_{\mu \tau} & =\sin ^{2} 2 \theta_{24} \cos ^{4} \theta_{14} \sin ^{2} \theta_{34}
\end{aligned}
$$

