Investigating Lorentz Invariance Violation with the long-baseline experiment P2O

Nishat Fiza IISER Mohali, India

XXVth DAE BRNS Symposium 2022 December 15th, 2022

Plan of the talk:

- Introduction
- Effect of LIV at probability level
- Correlation of LIV parameters with the oscillation parameters
- Bounds on the LIV parameters
- Summary

Lorentz Invariance Violation:

- CPT violation can be probed through Lorentz invariance violation
- Spontaneous breakdown of Lorentz invariance may occur at Planck scale ($M_P \sim 10^{19} GeV$)
- At low energy, LBL ν oscillation experiments can probe LIV

Lagrangian in presence of LIV:
$$\mathscr{L} = \frac{1}{2}\bar{\Psi}\left(i\gamma^{\mu}\partial_{\mu} - M + \hat{Q}\right)\Psi + \text{h.c.}^{[1]}$$

$$\mathscr{L}_{\text{LIV}} \supset -\frac{1}{2} \left[a^{\mu}_{\alpha\beta} \bar{\psi}_{\alpha} \gamma_{\mu} \psi_{\beta} + b^{\mu}_{\alpha\beta} \bar{\psi}_{\alpha} \gamma_{5} \gamma_{\mu} \right] ; \quad (a_{L})^{\mu}_{\alpha\beta} = (a+b)^{\mu}_{\alpha\beta}$$

Effective Hamiltonian:
$$H \simeq \frac{1}{2E} U \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U^{\dagger} + \sqrt{2} G_F N_e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} a_{ee} & a_{e\mu} & a_{e\tau} \\ a_{e\mu}^* & a_{\mu\tau} & a_{\mu\tau} \\ a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau} \end{pmatrix}$$

[1] Kostelecky, Mewes: arXiv:1112.6395

How do LIV parameters change the probability?

How do LIV parameters change the probability?

$$P_{\mu e}(SI + LIV) \simeq P_{\mu e}(SI, a_{ee}) + P_{\mu e}(|a_{e\mu}|) + P_{\mu e}(|a_{e\tau}|)$$
Combination of standard CC
interaction between ν_e and e
in earth's matter and a_{ee}
Deviation in the probability
due to $|a_{e\mu}|$ and $|a_{e\tau}|$

$$|\Delta P_{\mu e}| = |P_{\mu e}(SI + LIV) - P_{\mu e}(SI)|$$

Exclusion region in correlation with δ_{13}

Exclusion region in correlation with θ_{23}

Degenerate region in correlation to a_{ee}

$$\Delta \chi^{2}(a_{ee}) \sim \Delta P_{\mu e}(a_{ee})$$

$$\sim \left[\frac{\sin[1-\hat{A}(1+\hat{a}_{ee})]\Delta}{1-\hat{A}(1+\hat{a}_{ee})} - \frac{\sin[1-\hat{A}]\Delta}{1-\hat{A}}\right] \times \left[\frac{\sin[1-\hat{A}(1+\hat{a}_{ee})]\Delta}{1-\hat{A}(1+\hat{a}_{ee})} + \frac{\sin[1-\hat{A}]\Delta}{1-\hat{A}}\right]$$
• Marginalization over the mass hierarchy
• For inverted hierarchy, \hat{A} and Δ changes sign
$$where, \quad \Delta = \frac{\Delta m_{31}^{2}L}{4E}$$

$$\hat{A} = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}}$$

$$\Delta \chi^{2} \sim \left[\frac{\sin[1+\hat{A}(1+\hat{a}_{ee})]\Delta}{2} + \frac{\sin[1-\hat{A}]\Delta}{2}\right] \times \left[\frac{\sin[1+\hat{A}(1+\hat{a}_{ee})]\Delta}{2} - \frac{\sin[1-\hat{A}]\Delta}{2}\right]$$

$$\Delta \chi^{2} \sim \left[\underbrace{1 + \hat{A}(1 + \hat{a}_{ee})}_{1 + \hat{A}(1 + \hat{a}_{ee})} + \underbrace{\frac{1 - \hat{A}}{1 - \hat{A}}}_{a_{ee}} \right] \times \left[\underbrace{1 + \hat{A}(1 + \hat{a}_{ee})}_{1 + \hat{A}(1 + \hat{a}_{ee})} - \underbrace{1 - \hat{A}}_{1 - \hat{A}} \right]$$

Results:

Bounds on the LIV parameters

(At 95% confidence level)

Parameter	Bounds from DUNE $[10^{-23} \text{ GeV}]$	Bounds from P2O $[10^{-23} \text{ GeV}]$	Bounds from (P2O+DUNE) $[10^{-23} \text{ GeV}]$
a_{ee}	$[-24 < a_{ee} < -20]$	$[-30.8 < a_{ee} < -21.9]$	$-2.6 < a_{ee} < 3.3$
$a_{\mu\mu}$	$\cup [-3.2 < a_{ee} < 5.6]$ $-1.9 < a_{\mu\mu} < 2.0$	$\cup [-3.9 < a_{ee} < 8.6]$ $-4.0 < a_{\mu\mu} < 4.3$	$-1.6 < a_{\mu\mu} < 1.6$
$ a_{e\mu} \ a_{e au} $	0.6	1.6 2.1	0.4 0.7
$ a_{\mu au} $	1.5	2.9	1.3

- We consider P2O to study LIV
- Effect of LIV on probability
- Effect of LIV parameters on $|\Delta P_{\alpha\beta}|$
 - $\Delta \chi^2$ analysis of LIV parameters in correlation to standard oscillation parameters
- Bounds on the LIV parameters

Back-up

The two terms in I_{-} are plotted for both DUNE (red) and P2O (blue) as functions of the parameter $\hat{a}_{ee} = a_{ee}\sqrt{2G_FN_e}$. The solid curve is the first term $\left(\frac{\sin[1-\hat{A}(1+\hat{a}_{ee})]\Delta}{1-\hat{A}(1+\hat{a}_{ee})}\right)$, while the dashed curve is the second term $\left(\frac{\sin[1-\hat{A}]\Delta}{1-\hat{A}}\right)$. The small coloured circles show the locations of solutions where the two terms intersect.

Back-up

