The HSMU hypothesis

Wolfenstein Ansatz

Conclusion

Appendix 0000000

Renormalization Group Evolution of Neutrino Angles and Masses

Ankur Panchal PhD, High Energy Physics

Indian Institute of Science Education and Research, Bhopal

December, 2022

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

1 / 36

1 Background

- **2** The HSMU hypothesis
- **3** Wolfenstein Ansatz
- **4** Conclusion

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

- **2** The HSMU hypothesis
- **3** Wolfenstein Ansatz
- **4** Conclusion
- **6** Appendix

Physics	IISER Bhopal

イロン イボン イヨン イヨン

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

-

< < >> < <</>

Neutrinos and Standard Model

• Neutrino detection: β decay process

 $n
ightarrow p + e^- + ar{
u}_e$

- Three flavours $(\nu_e, \nu_\mu, \nu_\tau)$
- In SM: Chargeless, massless leptons
- Interact weakly

Image: Image:

-

Neutrino Oscillations

- Flavours mix
- Mathematically, mixing means rotations among flavour eigenstates
- Standard Parameterization *U_{PMNS}* =

Ankur Panchal PhD, High Energy Physics

Background 000●00	The HSMU hypothesis	Wolfenstein Ansatz 0000000	Conclusion	Appendix 0000000
PMNS matr	ix			

• Standard Parameterization *U_{PMNS}* =

$$\begin{pmatrix} c_{12}c_{13} & s_{13}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{2}s_{13} \end{pmatrix}$$

• where c_{ij} and s_{ij} are $\cos \theta_{ij}$ and $\sin \theta_{ij}$ respectively

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

Background 000●00	The HSMU hypothesis	Wolfenstein Ansatz 0000000	Conclusion 00	Appendix 0000000
PMNS matrix	ĸ			

• Standard Parameterization $U_{PMNS} =$

$$\begin{pmatrix} c_{12}c_{13} & s_{13}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{2}s_{13} \end{pmatrix}$$

• where c_{ij} and s_{ij} are $\cos \theta_{ij}$ and $\sin \theta_{ij}$ respectively

• δ_{CP} is <u>Charge-Parity</u> (CP) violations shown by leptons

Background 000●00	The HSMU hypothesis	Wolfenstein Ansatz 0000000	Conclusion	Appendix 0000000
PMNS matrix	<			

• Standard Parameterization *U*_{PMNS} =

$$\begin{pmatrix} c_{12}c_{13} & s_{13}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{2}s_{13} \end{pmatrix}$$

- where c_{ij} and s_{ij} are $\cos \theta_{ij}$ and $\sin \theta_{ij}$ respectively
- δ_{CP} is <u>Charge-Parity</u> (CP) violations shown by leptons
- Thus mixing implies $m_{\nu} \neq 0$

Background 000●00	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendix 0000000
PMNS matrix	<			

• Standard Parameterization *U*_{PMNS} =

$$\begin{pmatrix} c_{12}c_{13} & s_{13}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{2}s_{13} \end{pmatrix}$$

- where c_{ij} and s_{ij} are $\cos \theta_{ij}$ and $\sin \theta_{ij}$ respectively
- δ_{CP} is <u>Charge-Parity</u> (CP) violations shown by leptons
- Thus mixing implies $m_{\nu} \neq 0$
- Contradicts with SM's prediction that neutrinos are massless

Background 0000●0 The HSMU hypothesis

Wolfenstein Ansatz

Conclusion

< < >> < <</>

Appendix 0000000

Open questions about neutrinos

- Dirac nature or Majorana nature?
- Why are mixing angles so different from that of quarks?

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

Wolfenstein Ansatz

Conclusion

・ロン ・日 ・ ・ ヨン・

Appendix 0000000

CKM and PMNS matrices

U_{СКМ}

	/0.97366 - 0.97384	0.2237 – 0.2253	0.00358 - 0.00406
=	0.217 - 0.225	0.976 - 0.998	0.0396 - 0.0424
	0.0077 – 0.0083	0.0377 - 0.399	0.983 — 1.043 🖌

U_{PMNS}

	(0.802 - 0.845	0.513 - 0.579	0.143 – 0.156
=	0.233 - 0.507	0.461 - 0.694	0.631 - 0.778
	0.261 - 0.526	0.471 - 0.701	0.611 – 0.761

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

-

2 The HSMU hypothesis

- **3** Wolfenstein Ansatz
- **4** Conclusion

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

- ▲日 > ▲国 > ▲国 > ▲国 > ④ ◆ ④ >

IISER Bhopal 9 / 36

Image: A matrix

The idea

- New idea ⇒ Unification of mixing angles at some high energy scale [2]
- θ_q and θ are equal at high scale
- In past, Electromagnetism, EW force
- Present research, Grand Unification Theory (GUT)

・ロト ・ 日 ト ・ ヨ ト

RG equations

• How to calculate high scale values?

$$\dot{\theta}_{12} = -\frac{Cy_{\tau}^2}{32\pi^2}\sin{(2\theta_{12})s_{23}^2}\frac{|m_1e^{i\varphi_1} + m_2e^{i\varphi_2}|^2}{\Delta m_{sol}^2} + O(\theta_{13})$$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

э

11 / 36

3

RG equations

- How to calculate high scale values?
- Renormalization Group Equations

$$\dot{\theta}_{12} = -\frac{Cy_{\tau}^2}{32\pi^2}\sin{(2\theta_{12})s_{23}^2}\frac{|m_1e^{i\varphi_1} + m_2e^{i\varphi_2}|^2}{\Delta m_{sol}^2} + O(\theta_{13})$$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

Background 000000	The HSMU hypothesis 00000000000	Wolfenstein Ansatz	Conclusion	Appendix 0000000
The execution	n			

• Start with low scale quarks parameters (masses, mixing angles)

Background	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendix
000000	000●00000000	0000000		0000000
The executior	ı			

- Start with low scale quarks parameters (masses, mixing angles)
- Use RG eqns to run them to GUT scale

IISER Bhopal

< 口 > < 同 >

Background 000000	The HSMU hypothesis	Wolfenstein Ansatz 0000000	Conclusion

- Start with low scale quarks parameters (masses, mixing angles)
- Use RG eqns to run them to GUT scale
- HSMU: Equate them to neutrino mixing angles

The execution

IISER Bhopal

Appendix

Bac	kgro	und
000	000	

The execution

- Start with low scale quarks parameters (masses, mixing angles)
- Use RG eqns to run them to GUT scale
- HSMU: Equate them to neutrino mixing angles
- Run these neutrino angles down to M_Z scale (include masses at high scale)

The execution

- Start with low scale quarks parameters (masses, mixing angles)
- Use RG eqns to run them to GUT scale
- HSMU: Equate them to neutrino mixing angles
- Run these neutrino angles down to M_Z scale (include masses at high scale)
- Match the low scale parameters with experimentally measured values(at M_Z scale)

The HSMU hypothesis

Nolfenstein Ansatz

Conclusio

< < >> < <</>

Appendix 0000000

RG running of mixing angles and masses

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

13 / 36

Wolfenstein Ansatz

Image: A math a math

Experimental values

• Exeperimental values, precise upto $3 - \sigma$ range [1]

Oscillation parameters	3- σ range	Best fit values
θ_{12}	31.37° - 37.46°	34.33°
θ_{13}	8.16° - 8.94°	8.58°
θ_{23}	41.61° - 51.30°	48.79°
Δm_{atm}^2	$2.39 imes 10^{-3}$ - $2.57 imes 10^{-3} eV^2$	$2.49 imes 10^{-3} eV^2$
Δm_{sol}^2	$6.94 imes 10^{-5}$ - $8.14 imes 10^{-5} eV^2$	$7.50 imes 10^{-5} eV^2$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

14 / 36

Image: A math a math

Dirac Case

- Aim: To check whether all angles are inside
- Two subcases
- First: $\delta = 0^{\circ}$
- Second: $\delta \neq 0^{\circ} \ (= \delta_q)$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

э

Bac	kground	
000		

Nolfenstein Ansatz

Conclusio

< < >> < <</>

Appendix 0000000

Graph and conclusion

• Plot of θ_{23} vs θ_{13} correlation

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

16 / 36

Backgroun	d
000000	

Wolfenstein Ansatz

Conclusion

イロト イヨト イヨト

э

Appendix 0000000

Graph and conclusion

• Plot of θ_{23} vs θ_{13} correlation

• Conclusion for Dirac case: All angles can't be brought inside

Ankur Panchal PhD, High Energy Physics	IISER Bhopal
Renormalization Group Evolution of Neutrino Angles and Masses	16 / 36

The HSMU hypothesis

Wolfenstein Ansatz

Conclusio

Appendix 0000000

Majorana case

• Two more free parameters: φ_1 and φ_2

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

-

17 / 36

3

Majorana case

- Two more free parameters: φ_1 and φ_2
- Extra parameter to check: Effective Majorana Mass $(m_{\beta\beta})$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

< < >> < <</>

-

Majorana case

- Two more free parameters: φ_1 and φ_2
- Extra parameter to check: Effective Majorana Mass (m_{etaeta})
- Experimental range: <0.165 eV

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

-

Majorana case

- Two more free parameters: φ_1 and φ_2
- Extra parameter to check: Effective Majorana Mass (m_{etaeta})
- Experimental range: <0.165 eV
- First subcase: $\varphi_1 = \varphi_2 = 0^\circ \implies$ same result as Dirac case

 $\begin{array}{c|c} \mbox{Background} & \mbox{The HSMU hypothesis} & \mbox{Wolfenstein Ansatz} & \mbox{Conclusion} & \mbox{Appendix} & \mbox{Occession} & \mb$

• Second subcase: $\varphi_1 = 120^\circ, \varphi_2 = 30^\circ$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

3

-

• Second subcase: $\varphi_1 = 120^\circ, \varphi_2 = 30^\circ$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

-

 $\begin{array}{c|c} \mbox{Background} & \mbox{The HSMU hypothesis} & \mbox{Wolfenstein Ansatz} & \mbox{Conclusion} & \mbox{Appendix conservation} \\ \mbox{Majorana case: } \varphi_1, \varphi_2 \neq 0^\circ \mbox{ Conclusion} \\ \end{array}$

- Conclusion: All angles are inside
- Can we bring in Δm^2_{atm} , Δm^2_{sol} and $m_{\beta\beta}$?
- Have to vary $arphi_1$ and $arphi_2$

IISER Bhopal

< E.

The HSMU hypothesis 000000000000

Wolfenstein Ansatz

Conclusion

 Δm_{atm}^2

Appendix

Majorana case: Vary φ_1, φ_2

$\varphi_1(^\circ)$	$\varphi_2(^\circ)$	θ_{12}	θ_{13}	θ_{23}	Δm_{sol}^2	Δm_{atm}^2		$\varphi_1(^\circ)$	$\varphi_2(^\circ))$	θ_{12}	θ_{13}	θ_{23}	Δm_{sol}^2	Δm
50	0	\checkmark	\checkmark	\checkmark	\checkmark	-]	50	0	\checkmark	\checkmark	\checkmark	Only	one
100	0	\checkmark	~	\checkmark	-	-	1	100	0	\checkmark	\checkmark	\checkmark	Only	one
200	0	\checkmark	~	~	-	-	1	200	0	\checkmark	\checkmark	\checkmark	Only	one
300	0	\checkmark	-	\checkmark	√	-	1	300	0	\checkmark	On	ly one	Only	one
0	50	\checkmark	-	~	√	-	1	0	50	\checkmark	On	ly one	Only	one
50	50	\checkmark	-	~	√	-	1	50	50	\checkmark	On	ly one	Only	one
100	50	\checkmark	\checkmark	\checkmark	-	-	1	100	50	\checkmark	\checkmark	\checkmark	Only	one
200	50	\checkmark	-	~	-	-	1	200	50	\checkmark	On	ly one	Only	one
300	50	\checkmark	\checkmark	~	√	-	1	300	50	\checkmark	\checkmark	\checkmark	Only	one
0	100	\checkmark	-	\checkmark	√	-	1	0	100	\checkmark	On	ly one	Only	one
50	100	\checkmark	-	\checkmark	√	-	1	50	100	\checkmark	On	ly one	Only	one
100	100	\checkmark	~	~	-	-	1	100	100	\checkmark	\checkmark	\checkmark	Only	one
200	100	\checkmark	-	\checkmark	-	-	1	200	100	\checkmark	On	ly one	Only	one
300	100	\checkmark	-	\checkmark	√	-	1	300	100	\checkmark	On	ly one	Only	one
0	200	\checkmark	-	-	-	-	1	0	200	\checkmark	On	ly one	Only	one
50	200	\checkmark	-	\checkmark	√	-	1	50	200	\checkmark	On	ly one	Only	one
100	200	\checkmark	-	~	-	-	1	100	200	\checkmark	On	ly one	Only	one
200	200	\checkmark	-	~	-	-	1	200	200	\checkmark	On	ly one	Only	one
300	200	\checkmark	√	-	-	\checkmark	1	300	200	\checkmark	On	ly one	Only	one
0	300	\checkmark	-	\checkmark	√	-	1	0	300	√	On	ly one	Only	one
50	300	\checkmark	√	\checkmark	\checkmark	-	1	50	300	\checkmark	\checkmark	\checkmark	Only	one
100	300	\checkmark	√	\checkmark	-	-	1	100	300	\checkmark	\checkmark	\checkmark	Only	one
200	300	\checkmark	√	\checkmark	√	-	1	200	300	√	\checkmark	\checkmark	Only	one
300	300	\checkmark	-	\checkmark	\checkmark	-	1	300	300	\checkmark	On	ly one	Only	one

• Conclusion: At best, 4 parameters are brought in

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

20 / 36

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

1 Background

- **2** The HSMU hypothesis
- **3** Wolfenstein Ansatz
- **4** Conclusion

nkur Panchal PhD, High Energy Physics	IISER Bhopal
enormalization Group Evolution of Neutrino Angles and Masses	21 / 36

Back	ground
	500

Wolfenstein Ansatz

Conclusio

Image: A mathematical states and a mathem

Appendix 0000000

Wolfenstein Parameterization

• Introduce Wolfenstein parameter λ

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

22 / 36

Background	

Wolfenstein Parameterization

- Introduce Wolfenstein parameter λ
- $\lambda = \sin \theta_{12}$

Ankur Panchal PhD, High Energy Physics Renormalization Group Evolution of Neutrino Angles and Masses

Background	

Image: A matrix

Wolfenstein Parameterization

- Introduce Wolfenstein parameter λ
- $\lambda = \sin \theta_{12}$

 $\theta_{12} = \arcsin(\lambda)$ $\theta_{23} = \alpha \arcsin(\lambda^2)$ $\theta_{13} = \beta \arcsin(\lambda^3)$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

Background	

Image: A matrix and a matrix

-

Wolfenstein Parameterization

- Introduce Wolfenstein parameter λ
- $\lambda = \sin \theta_{12}$

$$heta_{12} = \arcsin(\lambda)$$

 $heta_{23} = lpha \arcsin(\lambda^2)$
 $heta_{13} = eta \arcsin(\lambda^3)$

• α, β are linear coefficients

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

Bac	kgro	und
000	000	

Wolfenstein Ansatz

Conclusion

Appendix 0000000

Effect of λ

• λ varies in inverse correlation with Δm_{atm}^2 , Δm_{sol}^2 and $m_{\beta\beta}$

Ankur PanchalPhD, High Energy PhysicsIISER BhopalRenormalization Group Evolution of Neutrino Angles and Masses23 / 36

< < >> < <</>

э

Bacl	kgrou	nd

Image: A math a math

φ_1 , φ_2 variations

• Select the best φ_1 , φ_2 pairs from HSMU case $\varphi_1 = 50^\circ$; $\varphi_2 = 0^\circ$ $\varphi_1 = 50^\circ$; $\varphi_2 = 300^\circ$ $\varphi_1 = 200^\circ$; $\varphi_2 = 300^\circ$ $\varphi_1 = 300^\circ$; $\varphi_2 = 50^\circ$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

Bacl	kgro	und
	ooc	

< < >> < <</>

α, β variations

- For already chosen φ_1 , φ_2 , vary α, β
- Ready for λ variations at the end

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

The HSMU hypothesis

Wolfenstein Ansatz

Conclusion

Appendix 0000000

$\varphi_1 = 300^\circ$, $\varphi_2 = 50^\circ$ with α, β variations

α	β	θ_{23}	Δm_{atm}^2	$m_{\beta\beta}$
1.0	1.0	*	•	•
1.0	0.8	*	•	•
1.0	0.6	*	•	•
1.0	0.4	*	•	•
1.0	0.2	*	•	•
0.8	1.0	*	•	•
0.8	0.8	*	•	٠
0.8	0.6	*	•	•
0.8	0.4	*	•	•
0.8	0.2	*	•	•
0.6	1.0	*	•	•
0.6	0.8	*	•	•
0.6	0.6	*	•	•
0.6	0.4	*	•	•
0.6	0.2	*	•	•
0.4	1.0	*	•	•
0.4	0.8	*	•	•
0.4	0.6	*	•	•
0.4	0.4	*	•	•
0.4	0.2	*	•	•
0.2	1.0	*	•	*
0.2	0.8	*	•	•
0.2	0.6	*	•	•
0.2	0.4	*	•	•
0.2	0.2	*	•	•

• We can rule out invalid set of values from this easily

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

26 / 36

Bac	kground	ł
000		

Wolfenstein Ansatz 000000●

Conclusio

・ロン ・回 と ・ ヨ と ・

2

Appendix 0000000

Threshold corrections

Ankur Panchal PhD, High Energy Physics	IISER Bhopal
Renormalization Group Evolution of Neutrino Angles and Masses	27 / 36

- **2** The HSMU hypothesis
- **3** Wolfenstein Ansatz
- **4** Conclusion
- **6** Appendix

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ()

IISER Bhopal 28 / 36

Background	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendix
000000		0000000	○●	0000000
Conclusion				

 HSMU ⇒ Leaning towards Majorana nature of neutrinos; but too stringent constraints

< < >> < <</>

Background	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendix
000000		0000000	○●	0000000
Conclusion				

- HSMU ⇒ Leaning towards Majorana nature of neutrinos; but too stringent constraints
- Wolfenstein ansatz parameters in

Background	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendix
000000		0000000	○●	0000000
Conclusion				

- HSMU ⇒ Leaning towards Majorana nature of neutrinos; but too stringent constraints
- Wolfenstein ansatz parameters in
- Threshold corrections \implies 5 out of 6 low scale parameters are successfully brought in (Only one Δm^2 remains)

B ackground	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendix
000000		0000000	○●	0000000
Conclusion				

- HSMU ⇒ Leaning towards Majorana nature of neutrinos; but too stringent constraints
- Wolfenstein ansatz parameters in
- Threshold corrections \implies 5 out of 6 low scale parameters are successfully brought in (Only one Δm^2 remains)
- Time to put a full stop on SUSY high scale unification models

- **2** The HSMU hypothesis
- **3** Wolfenstein Ansatz
- **4** Conclusion

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

(ロ) (個) (注) (注) 注) のへで

30 / 36

The HSMU hypothesis

Wolfenstein Ansatz

Conclusion

< ロ > < 回 > < 回 > < 回 > < 回 >

Appendix 000000

RG equations: Angles

$$\dot{\theta}_{12} = -\frac{Cy_{\tau}^2}{32\pi^2}\sin{(2\theta_{12})s_{23}^2}\frac{|m_1e^{i\varphi_1} + m_2e^{i\varphi_2}|^2}{\Delta m_{sol}^2} + O(\theta_{13})$$

$$\dot{\theta}_{13} = \frac{Cy_{\tau}^2}{32\pi^2} \sin(2\theta_{12}) \sin(2\theta_{23}) \frac{m_3}{\Delta m_{atm}^2(1+\zeta)}$$
$$\times \left[m_1 \cos(\varphi_1 - \delta) - (1+\zeta)m_2 \cos(\varphi_2 - \delta) - \zeta m_3 \cos(\delta) \right] + O(\theta_{13})$$

$$\dot{\theta}_{23} = -\frac{Cy_{\tau}^2}{32\pi^2} \sin 2\theta_{23} \frac{1}{\Delta m_{atm}^2} \\ \left[c_{12}^2 |m_2 e^{i\varphi_2} + m_3|^2 + s_{12}^2 \frac{m_2 e^{i\varphi_2} + m_3}{1 + \zeta} \right] + O(\theta_{13})$$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

The HSMU hypothesis

Wolfenstein Ansatz

Conclusior

< ロ > < 回 > < 回 > < 回 > < 回 >

Appendix 0000000

RG equations: Masses

$$\begin{split} 16\pi^2 \dot{m}_1 &= \left[\alpha + C y_\tau^2 (2s_{12}^2 s_{23}^2 + F_1)\right] m_1 \\ 16\pi^2 \dot{m}_2 &= \left[\alpha + C y_\tau^2 (2c_{12}^2 s_{23}^2 + F_2)\right] m_2 \\ 16\pi^2 \dot{m}_3 &= \left[\alpha + 2C y_\tau^2 c_{13}^2 c_{23}^2\right] m_3 \end{split}$$

$$8\pi^{2}(\Delta m_{sol}^{2}) = \alpha \Delta m_{sol}^{2} + Cy_{\tau}^{2} \left[2s_{23}^{2}(m_{2}^{2}c_{12}^{2} - m_{1}^{2}s_{12}^{2}) + F_{sol} \right]$$

$$8\pi^{2}(\Delta m_{atm}^{2}) = \alpha \Delta m_{atm}^{2} + Cy_{\tau}^{2} \left[2m_{3}^{2}s_{13}^{2}c_{23}^{2} - 2m_{2}^{2}c_{12}^{2}s_{23}^{2} + F_{atm} \right]$$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

3

(日) (四) (三) (三) (三)

RG equations: Variables defined

where
$$\dot{\theta}$$
, \dot{m} and \dot{m}^2 represent $\frac{d\theta}{dt}$, $\frac{dm}{dt}$ and $\frac{dm^2}{dt}$ respectively
 $t = \ln\left(\frac{\mu}{\mu_0}\right)$, where μ is the variable energy scale and μ_0 is the
initial energy scale from where RG running starts.
 $\Delta m_{sol}^2 = (m_2^2 - m_1^2) \& \Delta m_{atm}^2 = (m_3^2 - m_2^2)$
 s_{ij} and c_{ij} are $\sin \theta_{ij}$ and $\cos \theta_{ij}$ respectively.
 $C = -3/2$ for MSSM and $C = 1$ for SM.
 $\zeta = \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$
 y_{τ} is 3^{rd} generation element of Yukawa coupling matrix Y_e .

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

3

The HSMU hypothesis

Wolfenstein Ansatz

~

Conclusior

< ロ > < 回 > < 回 > < 回 > < 回</p>

Appendix 0000000

RG equations: Variables defined

$$F_{1} = -s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta + 2s_{13}^{2}c_{12}^{2}c_{23}^{2}$$

$$F_{2} = s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta + 2s_{13}^{2}s_{12}^{2}c_{23}^{2}$$

$$F_{sol} = (m_{1}^{2} + m_{2}^{2})s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta + 2s_{13}^{2}c_{23}^{2} \left(m_{2}^{2}s_{12}^{2} - m_{1}^{2}c_{12}^{2}\right)$$

$$F_{atm} = -m_{2}^{2}s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta - 2m_{2}^{2}s_{13}^{2}c_{23}^{2}$$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

34 / 36

Background	The HSMU hypothesis	Wolfenstein Ansatz	Conclusion	Appendi x
000000		0000000	00	00000●0
Initial values				

- M_Z scale = 91.1876 GeV
- GUT scale = 2×10^{16} GeV
- $\tan\beta = 55 \ (\beta \text{ is the ratio of expectation values of Higgs doublets in 2HDM})$
- SUSY cutoff scale = 2000 GeV
- Values of gauge coupling constants
- Higgs coupling = 0.4615 (at M_Z scale) & 0.7013 (at GUT scale)
- Weak coupling = 0.6519 (at M_Z scale) & 0.6904 (at GUT scale)
- Strong coupling = 1.2198 (at M_Z scale) & 0.6928 (at GUT scale)

IISER Bhopal

< D > < A > < B >

The HSMU hypothesis

Wolfenstein Ansatz

Conclusion

Appendix 000000

Majorana case sector

- "Effective Majorana mass" $m_{\beta\beta} \equiv \left| \sum_{i} U_{ei}^2 m_i \right|$
- PMNS matrix

	(c ₁₂ c ₁₃	<i>s</i> ₁₃ <i>c</i> ₁₃	$s_{13}e^{-i\delta_{CP}}$		$e^{\frac{i\varphi_1}{2}}$	0	0)
$U_{PMNS} =$	$-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}}$	$c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}}$	s ₂₃ c ₁₃	×	0	$e^{\frac{-i\varphi_2}{2}}$	0
	$\int s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}}$	$-c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}}$	$c_2 s_{13}$ /		0	0	1/

Lagrangians used

Below SUSY breaking scale:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_5$$

Above SUSY breaking scale,

but below seesaw scale:

$$\mathcal{L} = \mathcal{L}_{MSSM} + \mathcal{L}_5$$

Above seesaw scale:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm MSSM} + \mathcal{L}_{\rm seesaw} \\ &= \mathcal{L}_{\rm MSSM} - Y^{ij}_{\nu} \bar{L}^{j} \tilde{H} \nu^{i}_{\rm R} - \frac{1}{2} \bar{\nu}^{j} M^{ij} \nu^{j} + {\rm H.c.} \\ \mathcal{L}_{5} &= -\frac{f_{ik}}{\Lambda_{ss}} (\epsilon_{ab} L^{i}_{a} H_{b}) (\epsilon_{cd} L^{k}_{c} H_{d}) + {\rm H.c.} \end{split}$$

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses

IISER Bhopal

Wolfenstein Ansatz

< < >> < <</>

< ∃ > < ∃ >

 P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle.
 2020 global reassessment of the neutrino oscillation picture. *JHEP*, 02:071, 2021.

 R. N. Mohapatra, M. K. Parida, and G. Rajasekaran.
 High scale mixing unification and large neutrino mixing angles. *Phys. Rev. D*, 69:053007, Mar 2004.

Ankur Panchal PhD, High Energy Physics

Renormalization Group Evolution of Neutrino Angles and Masses