Strange particle production in neutrino interactions

Atika Fatima

Collaborators M. Sajjad Athar and S. K. Singh

Progress in Particle & Nuclear Physics (in Press) arXiv: 2206.13792, 204 pages

December 14, 2022

Outline

1 Introduction

- 2 Quasielatic hyperon production
- 3 Associated particle production
- 4 Inside the nucleus

Introduction

Duasielatic hyperon production Associated particle production Inside the nucleus Conclusion Backup

Neutrino interactions

Introduction

Duasielatic hyperon production Associated particle production Inside the nucleus Conclusion Backup

Neutrino interactions

Introduction

uasielatic hyperon production Associated particle production Inside the nucleus Conclusion Backup

Neutrino cross section vs. neutrino energy

Cross section: theory vs experiment

Results

Hyperon production

The observation of hyperons produced in the antineutrino $(\bar{\nu}_{\mu} + p \longrightarrow \mu^{+} + \Lambda)$ induced processes may provide an opportunity to:

★ test the SU(3) symmetry, G invariance and T invariance.

- **\bigstar** determine the *N Y* transition form factors.
- ★ get some information about the second class currents.

The measurement of the hyperon polarization may determine independently the form factors appearing in the weak hadronic current.

Using high luminosity electron beam at the JLab and MAMI, or antineutrino beam at MicroBooNE and DUNE using LArTPC detector, such studies could be possible.

Results

$|\Delta S| = 1$ quasielastic processes

Antineutrino induced single hyperon production

$$\begin{split} \bar{v}_l(k) + p(p) &\to l^+(k') + \Lambda(p') \\ \bar{v}_l(k) + p(p) &\to l^+(k') + \Sigma^0(p') \\ \bar{v}_l(k) + n(p) &\to l^+(k') + \Sigma^-(p') \end{split}$$

Results

$|\Delta S| = 1$ quasielastic processes

Antineutrino induced single hyperon production

$$\begin{split} \bar{\mathbf{v}}_l(k) + p(p) &\to l^+(k') + \Lambda(p') \\ \bar{\mathbf{v}}_l(k) + p(p) &\to l^+(k') + \Sigma^0(p') \\ \bar{\mathbf{v}}_l(k) + n(p) &\to l^+(k') + \Sigma^-(p') \end{split}$$

$$d\sigma = \frac{1}{4M_N E_v} (2\pi)^4 \delta^4 (k+p-k'-p') \frac{d^3 k'}{(2\pi)^3 2E_{k'}} \frac{d^3 p'}{(2\pi)^3 2E_{p'}} \overline{\sum} \sum |\mathcal{M}|^2$$

q = p' - p = k - k' is the four momentum transfer
M is the transition matrix element

$$\mathscr{M} = \frac{G_F \sin \theta_c}{\sqrt{2}} l_\mu J^\mu$$

Results

Hadronic current and transition form factors

$$V^{\mu}_{B'B}(p',p) = f_1^{B'B}(Q^2)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{M_B + M_B'}f_2^{B'B}(Q^2) + \frac{2q^{\mu}}{M_B + M_B'}f_3^{B'B}(Q^2)$$

$$A^{\mu}_{B'B}(p',p) = g_1^{B'B}(Q^2) \gamma^{\mu} \gamma_5 + i\sigma^{\mu\nu} \gamma_5 \frac{q_{\nu}}{M_B + M'_B} g_2^{B'B}(Q^2) + \frac{2q^{\mu}}{M_B + M'_B} \gamma_5 g_3^{B'B}(Q^2)$$

Results

Hadronic current and transition form factors

Results

Symmetry properties

- **X** SU(3) symmetry $\Rightarrow f_{1,2}^{NY}(Q^2)$ in terms of $f_{1,2}^{NN'}(Q^2)$
- $\bigstar \ T \ invariance \Rightarrow form \ factors \ are \ real$
- $\bigstar \mathbf{CVC} \Rightarrow f_3(Q^2) = 0$
- **A** G invariance $\Rightarrow f_3(Q^2) = 0$ and $g_2(Q^2) = 0$
- **X PCAC** \Rightarrow relates $g_3(Q^2)$ with $g_1(Q^2)$ through GT relation

Results

Symmetry properties

- **X** SU(3) symmetry $\Rightarrow f_{1,2}^{NY}(Q^2)$ in terms of $f_{1,2}^{NN'}(Q^2)$
- $\bigstar \ T \ invariance \Rightarrow form \ factors \ are \ real$
- $\bigstar \mathbf{CVC} \Rightarrow f_3(Q^2) = 0$
- **A** G invariance $\Rightarrow f_3(Q^2) = 0$ and $g_2(Q^2) = 0$
- **X PCAC** \Rightarrow relates $g_3(Q^2)$ with $g_1(Q^2)$ through GT relation
- ★ $g_2(Q^2) \neq 0 \Rightarrow$ G violation
- ★ Real values of $g_2(Q^2) \Rightarrow T$ invariance
- ★ Imaginary values of $g_2(Q^2) \Rightarrow T$ violation

Results

σ vs. $\overline{E}_{\overline{v}_{\mu}}$ for the Λ production

AF, MSA, SKS, Front. in Phys. 7 (2019) 13

Results

Kinematics: $v_l/\bar{v}_l(k) + N(p) \longrightarrow l^{\mp}(k') + \Lambda(p') + K(p_K)$

$$d\sigma = \frac{1}{4ME_{\nu}(2\pi)^5} \delta^4(k+p-k'-p'-p_K) \frac{d\vec{k}'}{(2E_l)} \frac{d\vec{p}'}{(2E_{\Lambda})} \frac{d\vec{p}_K}{(2E_K)} \overline{\sum} |\mathcal{M}|^2$$

Results

Kinematics: $v_l/\bar{v}_l(k) + N(p) \longrightarrow l^{\mp}(k') + \Lambda(p') + K(p_K)$

$$d\sigma = \frac{1}{4ME_{\nu}(2\pi)^5} \delta^4(k+p-k'-p'-p_K) \frac{d\vec{k}'}{(2E_l)} \frac{d\vec{p}'}{(2E_{\Lambda})} \frac{d\vec{p}_K}{(2E_K)} \overline{\sum} \sum |\mathcal{M}|^2$$

Results

Kinematics: $v_l/\bar{v}_l(k) + N(p) \longrightarrow l^{\mp}(k') + \Lambda(p') + K(p_K)$

$$d\sigma = \frac{1}{4ME_{\nu}(2\pi)^5} \delta^4(k+p-k'-p'-p_K) \frac{d\vec{k}'}{(2E_l)} \frac{d\vec{p}'}{(2E_{\Lambda})} \frac{d\vec{p}_K}{(2E_K)} \overline{\sum} \sum |\mathcal{M}|^2$$

Leptonic current is

$$j_{\mu}^{(L)} = \bar{u}(k')\gamma_{\mu}(1\pm\gamma_5)u(k)$$

■ $j^{\mu(H)}$ describes hadronic matrix element for

$$W^i + N \to B' + m$$

- $j^{\mu(H)}$ receives contribution from
 - Resonance excitations
 - Nonresonant Born terms

Results

Kinematics: $v_l/\bar{v}_l(k) + N(p) \longrightarrow l^{\mp}(k') + \Lambda(p') + K(p_K)$

$$d\sigma = \frac{1}{4ME_{\nu}(2\pi)^5} \delta^4(k+p-k'-p'-p_K) \frac{d\vec{k}'}{(2E_l)} \frac{d\vec{p}'}{(2E_{\Lambda})} \frac{d\vec{p}_K}{(2E_K)} \overline{\sum} \sum |\mathcal{M}|^2$$

Leptonic current is

$$j_{\mu}^{(L)} = \bar{u}(k')\gamma_{\mu}(1\pm\gamma_5)u(k)$$

■ $j^{\mu(H)}$ describes hadronic matrix element for

$$W^i + N \to B' + m$$

- $j^{\mu(H)}$ receives contribution from
 - Resonance excitations
 - Nonresonant Born terms
- Born terms are obtained using non-linear sigma model

Atika Fatima (AMU)

Strange particle production in neutrino interactions

Results

Associated particle production: Feynman diagrams

Results

σ for *K* Λ photoproduction processes

AF, MSA, ZAD, SKS, Int. J. Mod. Phys. E 29 (2020) 07, 2050051

Results

σ for CC induced $K\Lambda$ production processes

MSA, AF, SKS, Progress in Particle & Nuclear Physics (in Press) arXiv: 2206.13792

Results

σ for CC (anti)neutrino induced eta production processes

AF, MSA, SKS, Phys. Rev. D (arXiv: 2211.08830)

Hyperon production in the nuclear medium

$$\begin{split} \bar{\mathbf{v}}_l(k) + p(p) &\to l^+(k') + \Lambda(p') \\ \bar{\mathbf{v}}_l(k) + p(p) &\to l^+(k') + \Sigma^0(p') \\ \bar{\mathbf{v}}_l(k) + n(p) &\to l^+(k') + \Sigma^-(p') \end{split}$$

Hyperon production in the nuclear medium

AF, MSA, SKS, Front. in Phys. 7 (2019) 13

Antineutrino induced π^0 production from Δ and hyperon productions

- The study of hyperon production is important:
 - in modelling the neutrino event generators
 - to understand the axial-vector response of the hadronic sector

- The study of hyperon production is important:
 - in modelling the neutrino event generators
 - to understand the axial-vector response of the hadronic sector
- The results are presented for the quasielastic and inelastic strange particle production from the free nucleon and nuclear targets.

- The study of hyperon production is important:
 - in modelling the neutrino event generators
 - to understand the axial-vector response of the hadronic sector
- The results are presented for the quasielastic and inelastic strange particle production from the free nucleon and nuclear targets.
- The effect of FSI increases the total scattering cross section.
- The effect of FSI increases with increase in mass number.

- The study of hyperon production is important:
 - in modelling the neutrino event generators
 - to understand the axial-vector response of the hadronic sector
- The results are presented for the quasielastic and inelastic strange particle production from the free nucleon and nuclear targets.
- The effect of FSI increases the total scattering cross section.
- The effect of FSI increases with increase in mass number.
- The pions produced from the hyperon are significant in the antineutrino energy region of about 0.8 GeV.

BACKUP

Antineutrino induced π^- production from Δ and hyperon productions

σ for Λ and Σ^- productions in ${}^{12}C$ and ${}^{208}Pb$ targets

Non-linear sigma model

- This is an effective field theory(EFT).
- EFT is a low energy approximation to some underlying, more fundamental theory. Low is defined with respect to some energy scale.
- The basic idea consists of writing down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, and then calculating matrix elements with this Lagrangian within some perturbative scheme.

Meson-Meson Interaction

The lowest order Lagrangian with the minimal number of derivatives describing the interaction of the Goldstone bosons

$$\mathscr{L} = \frac{f_{\pi}^2}{4} Tr(D_{\mu} U^{\dagger} D^{\mu} U)$$

Meson-Meson Interaction

The lowest order Lagrangian with the minimal number of derivatives describing the interaction of the Goldstone bosons

$$\mathscr{L} = \frac{f_{\pi}^2}{4} Tr(D_{\mu} U^{\dagger} D^{\mu} U)$$

U is SU(3) matrix containing the Goldstone boson fields

$$U(x) = \exp\left(i\frac{\Phi(x)}{f_{\pi}}\right),$$

Meson-Meson Interaction

The lowest order Lagrangian with the minimal number of derivatives describing the interaction of the Goldstone bosons

$$\mathscr{L} = \frac{f_{\pi}^2}{4} Tr(D_{\mu} U^{\dagger} D^{\mu} U)$$

U is SU(3) matrix containing the Goldstone boson fields

$$U(x) = \exp\left(i\frac{\Phi(x)}{f_{\pi}}\right),\,$$

SU(3) representation of pseudoscalar fields

$$\Phi(x) = \sum_{k=1}^{8} \phi_k(x) \lambda_k = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\overline{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

Atika Fatima (AMU)

Strange particle production in neutrino interactions

Neutrino cross section vs neutrino energy

Cross section: theory vs experiment

Neutrino cross section vs neutrino energy

Cross section and area normalized flux

Interaction of pseudoscalar fields with baryons

We consider the octet of $\frac{1}{2}^+$ baryons. With each member of the octet we associate a complex, four-component Dirac field

Interaction of pseudoscalar fields with baryons

We consider the octet of $\frac{1}{2}^+$ baryons. With each member of the octet we associate a complex, four-component Dirac field

$$B(x) = \sum_{k=1}^{8} \frac{1}{\sqrt{2}} b_k(x) \lambda_k = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & n \\ \Xi^- & \Xi^0 & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix},$$

Production of pions in the final state

MSA and SKS, The Physics of Neutrino Interactions (CUP) 2020

FSI of produced pions: elastic and QE scattering

MSA and SKS, The Physics of Neutrino Interactions (CUP) 2020

FSI of produced pions: absorption and QE like events

MSA and SKS, The Physics of Neutrino Interactions (CUP) 2020

 \bar{v}_{μ} induced π^{-} production in the Δ dominance model in ¹²C target

Phys. Rev. D 75, 093003 (2007)

The lowest-order chiral Lagrangian for the baryon octet in the presence of an external current may be written in terms of the SU(3) matrix B as,

$$\begin{aligned} \mathscr{L}_{MB}^{(1)} &= \operatorname{Tr}\left[\bar{B}\left(iD - M\right)B\right] - \frac{D}{2}\operatorname{Tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu}, B\}\right) \\ &- \frac{F}{2}\operatorname{Tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu}, B]\right), \end{aligned}$$

covariant derivative of B: $D_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu}, B],$ $\Gamma^{\mu} = \frac{1}{2} \left[u^{\dagger} (\partial^{\mu} - ir^{\mu})u + u(\partial^{\mu} - il^{\mu})u^{\dagger} \right]$

Hadronic current for s channel diagram

Hadronic current for s channel diagram

$$\frown p(p+q)$$

$$i\frac{p+q+M}{s-M^2}$$

Hadronic current for s channel diagram

Hadronic current for s channel diagram

$$J^{\mu}|_{s} = ie\bar{u}(p')p_{k}\gamma_{5}\frac{p+q+M}{s-M^{2}}\left(\gamma^{\mu}e_{p} + i\frac{\kappa_{p}}{2M}\sigma^{\mu\nu}q_{\nu}\right)u(p)$$