RGEs & positivity bounds of the SMEFT dim-8 operators

XXV DAE-BRNS HEP 2022, MOHALI 12 Dec 2022

- Supratim Das Bakshi
- University of Granada
- In collaboration with M. Chala, Á. Díaz-Carmona, G. Guedes, arxiv:2205.03301

Dimension-8 operators & where do we find them?

- Leading contribution to observables *
 - Neutral triple gauge couplings, anomalous quartic gauge couplings, angular obs. (Drell-Yan)

arXiv:1308.6323, 2008.04298, 2002.03326, 2003.11615

Dimension-8 operators & where do we find them?

- Leading contribution to observables *
 - Neutral triple gauge couplings, anomalous quartic gauge couplings, angular obs. (Drell-Yan)

- When EFT cut-off scale is not very high, dim-8 effects are important. *
 - Higgs measurements arXiv:1808.00442, 2205.01561, ...
 - EFT validity (D6 vs D8 effects) arXiv:1604.06444, 2003.07862

arXiv:1308.6323, 2008.04298, 2002.03326, 2003.11615

• Electroweak precision data arXiv:2102.02819

Dimension-8 operators & where do we find them?

- Leading contribution to observables *
 - Neutral triple gauge couplings, anomalous quartic gauge couplings, angular obs. (Drell-Yan)

- Higgs measurements arXiv:1808.00442, 2205.01561, ...
- EFT validity (D6 vs D8 effects) arXiv:1604.06444, 2003.07862
- **Dim-8 RGE effects and positivity bounds (restrictions on dim-8 WCs).** *

arXiv:2205.03301, 2106.05291, 2110.01624, 1908.09845

arXiv:1308.6323, 2008.04298, 2002.03326, 2003.11615

• Electroweak precision data arXiv:2102.02819

$$\dot{c}_i^{(8)} \equiv 16\pi^2 \tilde{\mu} \frac{dc_i^{(8)}}{d\tilde{\mu}} = \gamma_{ij} c_j^{(8)} + \gamma'_{ijk} c_j^{(6)} c_k^{(6)} \qquad \text{At } \mathcal{O}\left(\frac{1}{\Lambda^4}\right), \text{ assuming no B/LI}$$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} O_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} \sum_{i} C_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} C_i^{(6)}$$

$$\dot{c}_{i}^{(8)} \equiv 16\pi^{2}\tilde{\mu}\frac{dc_{i}^{(8)}}{d\tilde{\mu}} = \gamma_{ij}c_{j}^{(8)} + \gamma'_{ijk}c_{j}^{(8)} + \gamma'_{ijk}c_{j}$$

Two dim-6 operator insertions. arXiv:2106.05291

Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions I - M Chala, G Guedes, M Ramos, J Santiago

 $\sum_{i} c_{j}^{(8)} O_{j}^{(8)} + \cdots$

 $\mathcal{L}_5, \mathcal{L}_7 \to \mathrm{B/LNV}$

 $\Lambda = EFT$ cut-off scale

 $c_j^{(6)} c_k^{(6)}$ At $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$, assuming no B/LNV.

e.g.:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} O_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} C_i^{(6)} + \frac{1}{\Lambda^4} \sum_{$$

$$\dot{c}_{i}^{(8)} \equiv 16\pi^{2}\tilde{\mu}\frac{dc_{i}^{(8)}}{d\tilde{\mu}} = \gamma_{ij}c_{j}^{(8)} + \gamma'_{ijk}c_{j}^{(8)} + \gamma'_{ijk}c_{j}$$

Two dim-6 operator insertions. arXiv:2106.05291

Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions I - M Chala, G Guedes, M Ramos, J Santiago

One dim-8 operator insertion.

arXiv:2205.03301

Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions II

- SDB, M Chala, Á Díaz-Carmona, G Guedes

 $c_{i}^{(6)}c_{k}^{(6)}$ At $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$, assuming no B/LNV.

e.g.:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} O_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} \sum_{i} C_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} C_i^{$$

$$\dot{c}_{i}^{(8)} \equiv 16\pi^{2}\tilde{\mu}\frac{dc_{i}^{(8)}}{d\tilde{\mu}} = \gamma_{ij}c_{j}^{(8)} + \gamma'_{ijk}c_{j}^{(8)} + \gamma'_{ijk}c_{j}$$

Two dim-6 operator insertions. * arXiv:2106.05291

Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions I - M Chala, G Guedes, M Ramos, J Santiago

One dim-8 operator insertion. arXiv:2205.03301 Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions II - SDB, M Chala, Á Díaz-Carmona, G Guedes

SMEFT Lagrangian

Bosonic operators' RGE:
$$\dot{c}_i^{(8)} \equiv 16\pi^2 \tilde{\mu} \frac{dc_i^{(8)}}{d\tilde{\mu}} = \gamma_{ij}c_j^{(8)} + \gamma'_{ijk}c_j^{(6)}c_k^{(6)}$$

Classes of operator that are **tree-level** generated in weakly coupled UV theories:

 $\{\phi^8, \phi^6 D^2, \phi^4 D^4, X^2 \phi^4, X \phi^4 D^4\}$ **Bosonic**:

SMEFT Dim-8 on-shell basis : arXiv:2005.00059 — C. W. Murphy SMEFT Dim-8 Green's/off-shell basis : arXiv:2112.12724 — M. Chala, Á. Díaz-Carmona, G. Guedes

arXiv:2001.0001 — Craig, Jiang, Li, Sutherland

$$Y^2, X^2H^2D^2, X^3H^2, X^4\}$$

Fermionic : $\{\psi^2 X \phi^3, \psi^2 \phi^2 D^3, \psi^2 \phi^5, \psi^2 \phi^4 D, \psi^2 X \phi^2 D, \psi^2 \phi^3 D^2, \psi^2 X^2 \phi, \psi^2 X^2 D, \psi^2 X \phi D^2\}$

SMEFT Lagrangian

Bosonic operators' RGE:

$$\dot{c}_{i}^{(8)} \equiv 16\pi^{2}\tilde{\mu}\frac{dc_{i}^{(8)}}{d\tilde{\mu}} = \gamma_{ij}c_{j}^{(8)} + \gamma'_{ijk}c_{j}^{(6)}c_{k}^{(6)}$$

Classes of operator that are **tree-level** generated) in weakly coupled UV theories:

 $\{\phi^8, \phi^6 D^2, \phi^4 D^4, X^2 \phi^4, X \phi^4 D^4\}$ **Bosonic**: $\{\psi^2 X \phi^3, \psi^2 \phi^2 D^3, \psi^2 \phi^5, \psi^2 \phi^4 D\}$ Fermionic :

SMEFT Dim-8 on-shell basis : arXiv:2005.00059 — C. W. Murphy SMEFT Dim-8 Green's/off-shell basis : arXiv:2112.12724 — M. Chala, Á. Díaz-Carmona, G. Guedes

arXiv:2001.0001 — Craig, Jiang, Li, Sutherland

$$\{y^2, X^2 H^2 D^2, X^3 H^2, X^4\}$$

, $\psi^2 X \phi^2 D, \psi^2 \phi^3 D^2, \psi^2 X^2 \phi, \psi^2 X^2 D, \psi^2 X \phi D^2\}$

Divergences to RGEs, some details:

- Compute 1-PI loop diagrams. Use FeynRules, FeynARTs, and FormCalc packages.
- Divergences are captured by the operators of off-shell/Green's basis.

$$16\pi^2 \epsilon \mathcal{L}_{\rm DIV} = \tilde{K}_{\phi} (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) + \tilde{\mu}^2 |\phi|^2 - \tilde{\lambda} |\phi|$$

[on RHS we have Green's basis]

- **Removing redundant operators** using on-shell relations.
- Cross-checks with MatchMakerEFT. H⁸ topologies are computed in MM primarily.
- Cross-checks with arXiv:2108.03669 (on-shell amplitude methods).

arXiv:2112.12724

arXiv:2106.05291

arXiv:2112.10787 - A Carmona, A Lazopoulos, P Olgoso, J Santiago

arXiv:2108.03669 - M A Huber, S De Angelis.

Bosonic-bosonic RGE:

	$\phi^4 D^4$	$B\phi^4 D^2$	$W\phi^4 D^2$	$B^2 \phi^4$	$W^2 \phi^4$	$WB\phi^4$
$B^2 \phi^2 D^2$	g_1^2	0	0	0	0	0
$W^2 \phi^2 D^2$	g_2^2	0	0	0	0	0
$WB\phi^2D^2$	g_1g_2	0	0	0	0	0
$G^2 \phi^2 D^2$	0	0	0	0	0	0
$W^3 \phi^2$	0	0	0	0	0	0
$W^2 B \phi^2$	0	0	0	0	0	0
$G^3 \phi^2$	0	0	0	0	0	0
$\phi^4 D^4$	g_2^2	0	0	0	0	0
$B\phi^4 D^2$	$g_1g_2^2$	λ	0	0	0	0
$W \phi^4 D^2$	g_2^3	0	g_2^2	0	0	0
$B^2 \phi^4$	$g_1^2 g_2^2$	$g_1\lambda$	$g_1^2 g_2$	λ	0	$g_{1}g_{2}$
$W^2 \phi^4$	g_2^4	$g_1g_2^2$	g_2^3	0	λ	$g_{1}g_{2}$
$WB\phi^4$	$g_1g_2^3$	$g_2\lambda$	$g_1\lambda$	$g_{1}g_{2}$	g_1g_2	λ
$G^2 \phi^4$	0	0	0	0	0	0
$\phi^6 D^2$	g_2^4	$g_1\lambda$	$g_2\lambda$	0	0	0
ϕ^8	λ^3	$g_1\lambda^2$	$g_2\lambda^2$	$g_1^2\lambda$	$g_2^2\lambda$	$g_1g_2\lambda$

Mixing induced by

$G^2 \phi^4$	$\phi^6 D^2$	ϕ^8	4
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
g_3^2	0	0	
0	λ	0	
0	λ^2	λ	$\widetilde{\mu}$
			ľ

 Largest contribution from each operator class is shown. Zeroes are cross-checked and consistent.

 Loop generated operators that are renormalised by tree-generated operators are grey. (unlike renorm. of dim-6 by dim-6).

• Blue entries contribute larger than naive dimensional analysis expectations.

$$\tilde{\mu} \frac{dc_{\phi^8}}{d\tilde{\mu}} = \frac{1}{16\pi^2} \left(192\lambda - 6(g_1^2 + 3g_2^2) + \dots \right)$$

Fermionic-bosonic RGE:

	$\psi^2 B \phi^3$	$\psi^2 W \phi^3$	$\psi^2 G \phi^3$	$\psi^2 \phi^2 D^3$	$\psi^2 \phi^5$	$\psi^2 \phi^4 D$	$\psi^2 B \phi^2 D$	$\psi^2 W \phi^2 D$	$\psi^2 G \phi^2 D$	$\psi^2 \phi^3 D^2$
$B^2 \phi^2 D^2$	0	0	0	g_1^2	0	0	0	0	0	0
$W^2 \phi^2 D^2$	0	0	0	g_2^2	0	0	0	0	0	0
$WB\phi^2D^2$	0	0	0	g_1g_2	0	0	0	0	0	0
$G^2 \phi^2 D^2$	0	0	0	g_3^2	0	0	0	0	0	0
$W^3 \phi^2$	0	0	0	0	0	0	0	0	0	0
$W^2 B \phi^2$	0	0	0	0	0	0	0	0	0	0
$G^3 \phi^2$	0	0	0	0	0	0	0	0	0	0
$\phi^4 D^4$	0	0	0	$ y^t ^2$	0	0	0	0	0	0
$B\phi^4 D^2$	0	0	0	$g_1 y^t ^2$	0	0	$ y^t ^2$	0	0	$g_1 y^t$
$W\phi^4 D^2$	0	0	0	$g_2 y^t ^2$	0	0	0	$ y^t ^2$	0	$g_2 y^t$
$B^2 \phi^4$	$g_1 y^t$	0	0	$g_{1}^{2} y^{t} ^{2}$	0	0	$g_1 y^t ^2$	0	0	$g_1^2 y^t$
$W^2 \phi^4$	0	$g_2 y^t$	0	$g_{2}^{2} y^{t} ^{2}$	0	g_2^2	0	$g_2 y^t ^2$	0	$g_2^2 y^t$
$WB\phi^4$	$g_2 y^t$	$g_1 y^t$	0	$g_1g_2 y^t ^2$	0	g_1g_2	$g_2 y^t ^2$	$g_1 y^t ^2$	0	$g_1g_2y^t$
$G^2 \phi^4$	0	0	g_3y^t	0	0	0	0	0	0	0
$\phi^6 D^2$	0	0	0	$g_2^2 y^t ^2$	0	$ y^t ^2$	$g_1 y^t ^2$	$g_2 y^t ^2$	0	$ y^t y^t ^2$
ϕ^8	0	0	0	$\lambda y^t ^4$	$y^t y^t ^2$	$\lambda y^t ^2$	$g_1\lambda y^t ^2$	$g_2\lambda y^t ^2$	0	$\lambda y^t y^t ^2$

Mixing induced by two-fermion operators

RGEs of Dim-6,4,2

• Dim-8 operators also induce running of dim-6, dir

	$\phi^4 D^4$	$B\phi^4 D^2$	$W\phi^4 D^2$	$B^2 \phi^4$	$W^2 \phi^4$	$WB\phi^4$	$G^2 \phi^4$	$\phi^6 D^2$	ϕ^8
ϕ^2	μ^6	0	0	0	0	0	0	0	0
ϕ^4	$\lambda\mu^4$	$g_1\mu^4$	$g_2\mu^4$	0	0	0	0	μ^4	0
$B^2 \phi^2$	$g_1^2\mu^2$	$g_1\mu^2$	0	μ^2	0	0	0	0	0
$W^2 \phi^2$	$g_2^2\mu^2$	0	$g_2\mu^2$	0	μ^2	0	0	0	0
$WB\phi^2$	$g_1g_2\mu^2$	$g_2\mu^2$	$g_1\mu^2$	0	0	μ^2	0	0	0
$G^2 \phi^2$	0	0	0	0	0	0	μ^2	0	0
$\phi^4 D^2$	$\lambda\mu^2$	$g_1\mu^2$	$g_2\mu^2$	0	0	0	0	μ^2	0
ϕ^6	$\lambda^2 \mu^2$	$\lambda g_1 \mu^2$	$\lambda g_2 \mu^2$	$g_1^2\mu^2$	$g_2^2\mu^2$	$g_1 g_2 \mu^2$	0	$\lambda\mu^2$	μ^2

Lower dim. classes renormalised by bosonic dim-8 operators. Similar contributions from two-fermion dim-8 operators are computed.

m-4, dim-	2 opera	tors.
	$C^2 \downarrow 4$	16 D2

 μ^2 is the squared Higgs mass in the SMEFT.

Positivity bounds

• Restrictions on Wilson coefficients of dim-8 operators.

Unitarity, analyticity, crossing symmetry

Tree-level scattering :

 $2 \rightarrow 2$

 $\mathscr{M}(s)_{1,2\to 1,2} = -2\lambda + \frac{\pi}{\Lambda^4}s^2$

arXiv:1908.09845, 2110.01624

 φ_i

$$\frac{d^2 \mathcal{M}(s, t=0)}{ds^2} \ge 0$$

$$egin{array}{c|c} Q^{(1)}_{H^4} \ Q^{(2)}_{H^4} \ Q^{(3)}_{H^4} \end{array}$$

 $(D_{\mu}H^{\dagger}D_{\nu}H)(D^{\nu}H^{\dagger}D^{\mu}H)$ $(D_{\mu}H^{\dagger}D_{\nu}H)(D^{\mu}H^{\dagger}D^{\nu}H)$ $(D^{\mu}H^{\dagger}D_{\mu}H)(D^{\nu}H^{\dagger}D_{\nu}H)$

$$\begin{aligned} c^{(2)}_{\phi^4 D^4} \geq \\ c^{(1)}_{\phi^4 D^4} + c^{(2)}_{\phi^4 D^4} \geq \\ c^{(1)}_{\phi^4 D^4} + c^{(2)}_{\phi^4 D^4} + c^{(3)}_{\phi^4 D^4} \geq \end{aligned}$$

Dim-8 RGEs effects on positivity

• For $V_1V_2 \rightarrow V_1V_2$ process:

$$\begin{split} g_1^2 c_{B^2 \phi^2 D^2}^{(1)} + g_2^2 c_{W^2 \phi^2 D^2}^{(1)} + 2g_1 g_2 c_{WB \phi^2 D^2}^{(4)} &\leq 0 \,, \\ g_1^2 c_{B^2 \phi^2 D^2}^{(1)} + g_2^2 c_{W^2 \phi^2 D^2}^{(1)} - 2g_1 g_2 c_{WB \phi^2 D^2}^{(4)} &\leq 0 \,, \\ c_{W^2 \phi^2 D^2}^{(1)} &\leq 0 \,, \\ g_1^2 c_{W^2 \phi^2 D^2}^{(1)} + 2g_1 g_2 c_{WB \phi^2 D^2}^{(4)} + g_2^2 c_{B^2 \phi^2 D^2}^{(1)} &\leq 0 \,, \\ g_1^2 c_{W^2 \phi^2 D^2}^{(1)} - 2g_1 g_2 c_{WB \phi^2 D^2}^{(4)} + g_2^2 c_{B^2 \phi^2 D^2}^{(1)} &\leq 0 \,. \end{split}$$

of the SMEFT.

$$egin{aligned} Q^{(1)}_{W^2H^2D^2} \ Q^{(2)}_{W^2H^2D^2} \ Q^{(3)}_{W^2H^2D^2} \ Q^{(4)}_{W^2H^2D^2} \end{aligned}$$

 $(D^{\mu}H^{\dagger}D^{\nu}H)W^{I}_{\mu\rho}W^{I}_{\nu}$ $(D^{\mu}H^{\dagger}D_{\mu}H)W^{I}_{\nu\rho}W^{I\nu\rho}$ $(D^{\mu}H^{\dagger}D_{\mu}H)W^{I}_{\nu\rho}\widetilde{W}^{I\nu\rho}$ $i\epsilon^{IJK}(D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H)W^{J}_{\mu\rho}W^{K\rho}_{\nu}$

- $_{\phi^2 D^2} \le 0 \,,$ $_{\phi^2 D^2} \le 0 \,,$
- $_{\phi^2 D^2} \le 0 \,,$
- $\int_{\phi^2 D^2} \le 0$,

arXiv:1902.08977

$X^2 \phi^2 D^2$ operators are not generated at tree-level matching of weakly coupled UV completion

Dim-8 RGEs effects on positivity

• RGE of $X^2 \phi^2 D^2$ operators:

$$\begin{split} c^{(1)}_{W^2\phi^2D^2}(\tilde{\mu}) &= c^{(1)}_{W^2\phi^2D^2}(\Lambda) - \frac{1}{16\pi^2} \dot{c}^{(1)}_{W^2\phi^2D^2}(\Lambda) \log \frac{\Lambda}{\tilde{\mu}} < 0 \\ &\Rightarrow \frac{1}{6}g_2^2 \bigg[2c^{(1)}_{\phi^4} + 3c^{(2)}_{\phi^4} + c^{(3)}_{\phi^4D^4} \\ &\quad - \frac{16}{3} \left(c^{(1)}_{l^2\phi^2D^3} + c^{(2)}_{l^2\phi^2D^3} + 3c^{(1)}_{q^2\phi^2D^3} + 3c^{(2)}_{q^2\phi^2D^3} \right)_{\alpha_1,\alpha_1} \bigg] \log \frac{\Lambda}{\tilde{\mu}} > 0 \,, \end{split}$$

Sufficient conditions :

- Putting the RGEs of the operators.
- Derive relations among operators of same class.
- Wilson coefficients generated from UV theories matched to SMEFT Dim-8 at tree-level are bounded by these positivity (or negativity) constraints.

 $2c_{\phi^4}^{(1)} + 3c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0,$ $c_{\phi^4}^{(1)} + 2c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0 \,,$ $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0$, $\left[c_{\psi_R^2\phi^2 D^3}^{(1)} + c_{\psi_R^2\phi^2 D^3}^{(2)}\right]_{\alpha_1,\alpha_1} \le 0,$ $\left| c_{\psi_L^2 \phi^2 D^3}^{(1)} + c_{\psi_L^2 \phi^2 D^3}^{(2)} + c_{\psi_L^2 \phi^2 D^3}^{(3)} + c_{\psi_L^2 \phi^2 D^3}^{(4)} \right|_{\mathcal{O}^{(1)} \mathcal{O}^{(1)}} \leq 0,$ $\left[c_{\psi_{L}^{2}\phi^{2}D^{3}}^{(1)} + c_{\psi_{L}^{2}\phi^{2}D^{3}}^{(2)} - c_{\psi_{L}^{2}\phi^{2}D^{3}}^{(3)} - c_{\psi_{L}^{2}\phi^{2}D^{3}}^{(4)}\right]_{\alpha_{1},\alpha_{1}} \leq 0;$

- are discussed.
 - Tree-generated ops. mix with loop-generated ops.
 - Mixing induced terms larger than naive dimensional analysis.
 - Dim-8 ops. induced running of lower dimensional ops. are computed (loop-generated dim-6 ops. have non-zero mixing).
 - Positivity bounds on $X^2 \phi^2 D^2$ hold at sufficiently small scales at one-loop accuracy.

• Renormalization of bosonic SMEFT operators by dim-8 tree-level generated operators

Upcoming...

marked by

– SDB, A. Díaz-Carmona

Blank entries vanish; a tick \checkmark represents that the complete contribution is known; the \checkmark implies that only (but substantial) partial results have been already obtained; the X indicates that nothing, or very little, is known. The contribution made in this paper is

Thanks for your attention !

RGEs of Dim-6,4,2

• Fermionic dim-8 operators also induce running of dim-6, dim-4, dim-2 operators.

	$\psi^2 B \phi^3$	$\psi^2 W \phi^3$	$\psi^2 G \phi^3$	$\psi^2 \phi^2 D^3$	$\psi^2 \phi^5$	$\psi^2 \phi^4 D$	$\psi^2 B \phi^2 D$	$\psi^2 W \phi^2 D$	$\psi^2 G \phi^2 D$	$\psi^2 \phi^3 L$
ϕ^2	0	0	0	0	0	0	0	0	0	0
ϕ^4	0	0	0	$\mu^4 y^t ^2$	0	0	0	0	0	$\mu^4 y^t$
$B^2 \phi^2$	0	0	0	0	0	0	0	0	0	0
$W^2 \phi^2$	0	0	0	0	0	0	0	0	0	0
$WB\phi^2$	0	0	0	0	0	0	0	0	0	0
$G^2 \phi^2$	0	0	0	0	0	0	0	0	0	0
$\phi^4 D^2$	0	0	0	$\mu^2 y^t ^2$	0	0	0	0	0	$\mu^2 y^t$
ϕ^6	0	0	0	$\lambda \mu^2 y^t ^2$	$\mu^2 y^t$	$\mu^2 y^t ^2$	$\mu^2 y^t ^2$	$\mu^2 y^t ^2$	0	$\mu^2 y^t y^t$

Lower dim. classes renormalised by the fermionic dim-8 operators.

