TENSOR RENORMALIZATION GROUP ANALYSIS OF TWO-DIMENSIONAL GENERALIZED O(2) MODEL PRESENTOR - VAMIKA LONGIA

Authors - Minati Biswal, Raghav G. Jha, Anosh Joseph, Vamika Longia, Abhishekh Samlodia

OUTLINE

- **1** TENSOR NETWORKS
- **2** Tensor Network formulation
- **3** 2D Generalized O(2) Model
- 4 HOTRG METHOD

OUTLINE

- **1** TENSOR NETWORKS
- **2** Tensor Network formulation
- 3 2D GENERALIZED O(2) MODEL
- 4 HOTRG METHOD

LAGRANGIAN APPROACH

The systems that can be studied using this approach are

CLASSICAL MANY-BODY SYSTEM

PATH INTEGRAL REPRESENTATION OF QUANTUM SYSTEM

LAGRANGIAN APPROACH

We try to study the

PARTITION FUNCTION

$$\mathbf{Z} = \int [\mathrm{d}\phi] \exp[-\mathbf{S}(\{\phi\})]$$

COARSE GRAINING METHODS

TRG, SRG, HOTRG, TNR, HOSRG, ...

LAGRANGIAN APPROACH

We try to study the

PARTITION FUNCTION

$$\mathbf{Z} = \int [\mathrm{d}\phi] \exp[-\mathbf{S}(\{\phi\})]$$

COARSE GRAINING METHODS

TRG, SRG, HOTRG, TNR, HOSRG, ...

OUTLINE

1 TENSOR NETWORKS

2 Tensor Network formulation

3 2D generalized O(2) Model

4 HOTRG METHOD

TN FORMULATION

HOTRG 000000000

2D Spin Model

HOTRG 000000000

2D Spin Model

		_
		_
		-

OUTLINE

- **1** TENSOR NETWORKS
- **2** Tensor Network formulation
- **3** 2D Generalized O(2) Model
- 4 HOTRG Method

2D MODEL

The modified XY spin model on a two-dimensional square lattice

$$H = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) - J_1 \sum_{\langle ij \rangle} \cos(q(\theta_i - \theta_j)) - h \sum_i \cos\theta_i,$$

 $\theta_i \in [0, 2\pi] \quad \& \quad J, J_1 > 0$

For
$$q = 2$$
, $J = \Delta$ and $J_1 = 1 - \Delta$, with $0 \le \Delta \le 1$

$$H = -\sum_{\langle ij \rangle} [\Delta \cos(\theta_i - \theta_j) + (1 - \Delta) \cos(2\theta_i - 2\theta_j)] - h \sum_i \cos\theta_i,$$

usual XY model

purely spin-nematic model

For $\Delta = 0$ - purely spin-nematic term

Our goal is to look into the physics for the region

$0 \leq \Delta \leq 1$

Our goal is to look into the physics for the region

$0 \leq \Delta \leq 1$

and determine the multi-critical point accurately

 Δ_{mc} .

TENSOR NETWORK CONSTRUCTION

$$Z = \prod_{i} \int \frac{d\theta_{i}}{2\pi} \prod_{\langle ij \rangle} e^{\beta [\Delta \cos(\theta_{i} - \theta_{j}) + (1 - \Delta)\cos(2(\theta_{i} - \theta_{j}))]} \prod_{i} e^{\beta [h\cos(\theta_{i})]}$$

$$Z = \prod_{s} \int \frac{d\theta_s}{2\pi} \prod_{l \in L} \sum_{n_l} a_{n_l}(\beta, \Delta) e^{\iota n_l(\theta_{s_l} - \theta_{s_j})} \sum_{p_l} I_{p_l/2}(\beta h) e^{\iota p_l \theta_i}$$

Using character expansion for

$$e^{x\cos\theta} = \sum_{n=-\infty}^{\infty} I_n(x) e^{\iota n \theta},$$

where $I_{\rm n}(x)$ are the modified Bessel functions of the first kind.

$$Z = \prod_{s} \int \frac{d\theta_{s}}{2\pi} \prod_{l \in L} \sum_{n_{l}} a_{n_{l}}(\beta, \Delta) e^{\iota n_{l}(\theta_{s_{i}} - \theta_{s_{j}})} \sum_{p_{l}} I_{p_{l}/2}(\beta h) e^{\iota p_{l}\theta_{i}},$$

$$a_n(\beta, \Delta) = \sum_{m=-\infty}^{\infty} I_{n-2m}(\beta \Delta) I_m(\beta(1-\Delta))$$

Integrating over the $\boldsymbol{\theta}$ degrees of freedom,

$$Z = t Tr \left(\prod T_{ijkl} \right),$$

where

$$T_{ijkl} = T_{i,j,k,l} = \sqrt{a_{n_i}(\beta, \Delta)a_{n_j}(\beta, \Delta)a_{n_k}(\beta, \Delta)a_{n_l}(\beta, \Delta)} I_{i+k-j-l}(\beta h)$$

OBSERVABLE

There are two main observales calculated

$$C_{\rm v} = \frac{\partial^2 F}{\partial \beta^2},$$

and

$$\mathbf{M} = -\frac{\partial \mathbf{F}}{\partial \mathbf{h}} = \frac{1}{\beta} \frac{\partial \ln \mathbf{Z}}{\partial \mathbf{h}}$$

where,

$$\mathbf{F} = -\frac{\ln Z}{\beta}.$$

RESULTS

We obtain two different types of transition

- . the multi-critical point is obtained at $\Delta=0.32$
- . for $\Delta < 0.32$ we have two phase transition
- . for $\Delta>0.32$ we have BKT phase transition

HOTRG 00000000

RESULTS

System size $2^{30} \times 2^{30}$ with $\chi = 91$.

RESULTS

 $T_{h \rightarrow 0}$

RESULTS

Δ	T_{Cv}	$T_{h \rightarrow 0}$	
0.34	0.72	0.68	
0.60	0.90	0.86	

THANK YOU

OUTLINE

- **1** TENSOR NETWORKS
- **2** Tensor Network formulation
- 3 2D GENERALIZED O(2) MODEL
- 4 HOTRG METHOD

TN FORMULATION

HOTRG 0●0000000

TN FORMULATION

HOTRG 00000000

Tensor Networks

TN FORMULATION

HOTRG 000●00000

$$M_{xx^\prime yy^\prime} = \sum_i T_{x_1x_1^\prime yi} T_{x_2x_2^\prime iy}$$

where

$$x=x_1\otimes x_2, x'=x_1'\otimes x_2'$$

TN FORMULATION

HOTRG 0000000000

TN FORMULATION

HOTRG 0000000000

TN FORMULATION

HOTRG ooooooo●o

TN FORMULATION

HOTRG 00000000●

