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Abstract

We apply the BFFT formalism to a prototypical second-
class system, aiming to convert its constraints from sec-
ond to first-class. The proposed system admits a consis-
tent initial set of second-class constraints and an open po-
tential function providing room for applications to mechan-
ical models as well as field theory such as the non-linear
sigma model. The constraints can be arbitralily non-linear,
broadly generalizing previously known cases. We obtain a
sufficient condition for which a simple closed expression for
the Abelian converted constraints and modified involutive
Hamiltonian can be achieved. As an explicit example, we
discuss a particle on a torus model, obtaining the full first-
class abelianized constraints in closed form and the corre-
sponding involutive Hamiltonian.

1. Introduction

The quantization of constrained dynamical systems has
been extensively studied in the theoretical physics literature
from many different perspectives [1]. One of the successful
path to quantizing systems with second-class constraints
through their conversion to first-class, using auxiliary vari-
ables is Batalin-Fradkin-Fradkina-Tyutin method [2].We pro-
pose a prototypical second-class dynamical system which
includes many of the physical models as particular cases
[3, 4]. In the present work, we considerably extend that
model in order to properly use the BFFT formalism [3, 4].

2. Prototypical Non-linear Second Class Constraint
System

Given a symmetric invertible square matrix fij(q
k) depend-

ing on the variables qk, with i, j, k = 1, . . . , N , and M thrice
differentiable functions Tα(q

k), with α = 1, . . . ,M , we define
our prototypical system by the Lagrangian [3, 4],

L(lα, qk, q̇k) =
1

2
fij(q

k)q̇iq̇j − V (qk)− lαTα(q
k) . (1)

Although the variables lα in a certain sense enter in (1) as
Lagrange multipliers, at this point they are considered as
configuration space variables in very much the same level
as qk.
We obtain the canonical Hamiltonian corresponding to La-
grangian in eqn.(1) as,

H =
1

2
f ij(qk)pipj + V (qk) + lαTα(q

k) (2)

and a first set of M trivial primary constraints

χ(1)α = πα , α = 1, . . . ,M . (3)

The upper index functions f ij(qk) introduced in the Hamil-
tonian (2) denote the inverse of the previous lower index
ones fij(q

k). We shall often need the partial derivatives of
the functions f ij(qk), V (qk) and Tα(q

k), for that matter we
introduce the condensed brief notations

f
ij
,k ≡ ∂f ij

∂qk
, Vi ≡

∂V

∂qi
Tαi ≡

∂Tα

∂qi
(4)

Following further the DB algorithm [1], we impose the sta-
bility of the constraints under time evolution. As a result,
three more constraint families are generated,

χ(2)α = Tα , χ(3)α = f ijpiTαj , (5)

and
χ(4)α =

1

2
Q
ij
α pipj − vα − lβwαβ , (6)

constituting a total of 4M constraints in phase space. For
notation convenience, in the RHS of equation (6) we have
introduced the qk-dependent quantities Q

ij
α , vα and wαβ de-

fined explicitly by

Q
ij
α ≡

(
f ilTαl

)
,k
fkj +

(
f jlTαl

)
,k
fki − fklTαkf

ij
,l , (7)

vα ≡ f ijTαiVj , and wαβ ≡ f ijTαiTβj . (8)
As it turns out, if we assume

w ≡ detwαβ ̸= 0 , (9)

the whole set of constraints χ(r)α with r = 1, . . . , 4 is second-
class. This can be seen by computing the Poisson brackets
among all constraints and writing the resulting constraint
matrix as

∆(rs)αβ ≡ {χ(r)α, χ(s)β} =


0 0 0 wαβ
0 0 wαβ Dαβ
0 −wαβ Mαβ Rαβ

−wαβ −Dβα −Rβα Nαβ

 ,

(10)

for r, s = 1, . . . , 4, with the short-hand conventions

Dαβ ≡ {χ(2)α, χ(4)β} , Mαβ ≡ {χ(3)α, χ(3)β} , (11)

and

Nαβ ≡ {χ(4)α, χ(4)β} , Rαβ ≡ {χ(3)α, χ(4)β} . (12)

In fact, the determinant of the constraint matrix (10) de-
pends only on its secondary diagonal and is given by

det∆(rs)αβ = w4 (13)

which clearly shows that, under the assumption (9), the pro-
totypical system (1) is indeed second-class.
For completeness and future reference, we compute the re-
maining further entries below the main diagonal in the con-
straint matrix (10) and write them explicitly as

Mαβ = f ijpk

[(
fklTαl

)
,i
Tβj −

(
fklTβl

)
,i
Tαj

]
= pkM

k
αβ ,

Dαβ = TαiQ
ij
β pj (14)

Nαβ = pi

[
χ(4)α,jQ

ij
β − χ(4)β,jQ

ij
α

]
= pipjpkQ

ijk
αβ + piV

i
αβ + pil

γN i
αβγ (15)

and
Rαβ = pipjR

ij
αβ + f ijTαivβj + lγf ijTαiwβγj (16)

3. BFFT Constraints Abelianization

The Batalin-Fradkin-Fradkina-Tyutin quantization approach
[2] aims to convert the second-class constraints, in our case
all χ(r)α, to corresponding first-class ones by extending the
initial phase space (qk, lα, pk, πα) including new BFFT vari-
ables η(r)α. For the present prototypical system, the in-
dexes run through r = 1, . . . , 4, α = 1, . . . ,M , and we have
a total of 4M η(r)α BFFT variables. The sought converted
constraints χ̃(r)α can be expanded in a power series in the
auxiliary BFFT variables as [3, 4]

χ̃(r)α =

∞∑
n=0

X(rt(n))αγ(n)
η(t(n))γ(n) . (17)

The converted first-class constraints χ̃(r)α will satisfy follow-
ing conditions,

X(r)α = χ(r)α . (18)

and
{χ̃(r)α, χ̃(s)β} = 0 (19)

Substituting (17) into (19) and picking up the resulting η(r)α

zero-order term, it is straightforward to obtain the well-
known BFFT first-step-condition

∆(rs)αβ = −X(rt1)αγ1ω
(t1t2)γ1γ2X(st2)βγ2 , (20)

where ω(t1t2)γ1γ2, defined as

ω(rs)αβ ≡ {η(r)α, η(s)β} , (21)

characterizes the symplectic structure among the BFFT
variables. In practical terms, one chooses a convenient
ω(rs)αβ and solves (20) for X(rs)αβ. For our current pro-
totypical second-class system, aiming to preserve the ini-
tial constraints original structure as much as possible, we
choose the symplectic BFFT algebra [3, 4]

ω(rs)αβ =


0 0 δαβ 0

0 0 0 δαβ

−δαβ 0 0 0

0 −δαβ 0 0

 (22)

and consider a deformation in phase space induced by the
BFFT variables corresponding to the ansatz

χ̃(1)α = πα − η
(3)
α , χ̃(2)α = Tα + η

(2)
α ,

χ̃(3)α = f̄ ij
(
pi − Tβiη

(4)β
)
T̄αj ,

(23)

and

χ̃(4)α =
1

2
Q̄
ij
α

(
pi − Tβiη

(4)β
)(

pj − Tγjη
(4)γ

)
−v̄α − lβw̄αβ − w̄αβη

(1)β (24)

with all barred quantities depending only on the variables
qk and η

(2)
α . Now it is straightforward to check that the con-

verted constraints (23) and (24) will generate the Abelian al-
gebra (19) if the barred quantities, generically represented
by F̄ (qk, η

(2)
α ), satisfy the condition [3, 4]

F̄,i = Tαi{F̄ , η(4)α} , (25)

The corresponding modified Hamiltonian in strong involu-
tion with the converted constraints can be directly obtained
from (2), considering the same deformation in phase space
introduced in equations (23) and (24), as

H̃ =
1

2
f̄ ij(qk, η

(2)
α )

(
pi − Tβiη

(4)β
)(

pj − Tγjη
(4)γ

)
+ V̄ (qk, η

(2)
α ) + (lα + η(1)α)

(
Tα(q

k) + η
(2)
α

)
(26)

with
V̄,i = Tαi{V̄ , η(4)α} . (27)

4. Mechanical Example: Particle on torus

Particle on torus is a two dimensional surface embedded
in three dimensional space. It has been studied by many
physicists as a simple three dimensional model for con-
strained motion [4]. Lagrangian for a particle constrained
to move on the surface of torus of radius r is

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
m(b + r sin θ)2ϕ̇2 − l(r − a) (28)

where (r, θ, ϕ) are toroidal co-ordinates. The canonical
Hamiltonian corresponding to the Lagrangian in eqn(28)is
then written as,

H =
p2r
2m

+
p2θ

2mr2
+

p2ϕ

2m(b + r sin θ)2
+ l(r − a) (29)

where pr, pθ, pϕ and pλ are the canonical momenta con-
jugate to the coordinate r, θ ϕ and l respectively. All the
constraints can be written as,

χ1 = π ≈ 0

χ2 = T = (r − a) ≈ 0

χ3 = frrprTr =
pr
m

≈ 0

χ4 =
1

2
{Qθθp2θ +Qϕϕp2ϕ} − lω

=
1

m
{
p2θ
mr3

+
p2ϕ sin θ

m(b + r sin θ)3
− l} ≈ 0 (30)

Thus the matrix ∆rs between the constraints has the form

∆rs = {χr, χs}P =


0 0 0 1

m
0 0 1

m 0

0 − 1
m 0 3

m3{
p2θ
r4
+

p2ϕsin
2 θ

(b+r sin θ)4
}

− 1
m 0 − 3

m3{
p2θ
r4
+

p2ϕsin
2 θ

(b+r sin θ)4
} 0


(31)

BFFT Converted constraints and Hamiltonian can be writ-
ten as,

χ̃(1) = π − η(3)

χ̃(2) = (r − a) + η(2)

χ̃(3) =
1

m
(pr − η(4))T̄

χ̃(4) =
1

m
{

p2θ
m(r + η(2))3

+
p2ϕ sin θ

m[b + (r + η(2)) sin θ)]3

−l − η(1)} (32)

H̃ =
(pr − η(4))2

2m
+

p2θ
2m(r + η(2))2

+
p2ϕ

2m[b + (r + η(2)) sin θ]2

+(l + η(1))(r + η(2) − a) (33)

It can easily be verified that the modified constraints and
Hamiltonian are involutive in nature.

5. Conclusion

In this work we have successfully studied the constraint
structure and Abelianization procedure of a prototypical
nonlinear second-class system. We have also studied par-
ticle on torus as an example of this kind of system.
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