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‘ Abstract |

We apply the BFFT formalism to a prototypical second-
class system, aiming to convert its constraints from sec-
ond to first-class. The proposed system admits a consis-
tent initial set of second-class constraints and an open po-
tential function providing room for applications to mechan-
ical models as well as field theory such as the non-linear
sigma model. The constraints can be arbitralily non-lineatr,
broadly generalizing previously known cases. We obtain a
sufficient condition for which a simple closed expression for
the Abelian converted constraints and modified involutive
Hamiltonian can be achieved. As an explicit example, we
discuss a particle on a torus model, obtaining the full first-
class abelianized constraints in closed form and the corre-
sponding involutive Hamiltonian.

‘ 1. Introduction |

The quantization of constrained dynamical systems has
been extensively studied in the theoretical physics literature
from many different perspectives [1]. One of the successful
path to quantizing systems with second-class constraints
through their conversion to first-class, using auxiliary vari-
ables is Batalin-Fradkin-Fradkina-Tyutin method [2].We pro-
pose a prototypical second-class dynamical system which
iIncludes many of the physical models as particular cases
[3, 4]. In the present work, we considerably extend that
model in order to properly use the BFFT formalism [3, 4].

2. Prototypical Non-linear Second Class Constraint
System

Given a symmetric invertible square matrix fz-j(qk) depend-
ing on the variables ¢*, with i, 5,k = 1,..., N, and M thrice
differentiable functions Ta(q’f), witha =1,..., M, we define
our prototypical system by the Lagrangian [3, 4],

. 1 g
L% q",¢") = §f¢j(qk>qzq3 V(") = 1°Ta(d™). (1)
Although the variables [“ in a certain sense enter in (1) as
Lagrange multipliers, at this point they are considered as
configuration space variables in very much the same level
k
as q".
We obtain the canonical Hamiltonian corresponding to La-
grangian in egn.(1) as,

1 ..
H =3 f" (¢")pipj + V(d") + 1°Ta(q") (2)

and a first set of M trivial primary constraints
X(l)azﬂ&v @Zl,...,M. (3)

The upper index functions f%/(¢*) introduced in the Hamil-
tonian (2) denote the inverse of the previous lower index
ones fz-j(q’f). We shall often need the partial derivatives of
the functions f%(¢"*), V(¢*) and Ty(¢"), for that matter we
introduce the condensed brief notations

O i 1%

; oT
fZ] — -4 = Ta@' o

= a—q@ (4)

Following further the DB algorithm [1], we impose the sta-
bility of the constraints under time evolution. As a result,
three more constraint families are generated,

X2 =Ta,  X@)a=S"PiTa;, (5)
and -

X(4)a = 5@371%1?]' —va — Pwyg, (6)

constituting a total of 4M constraints in phase space. For
notation convenience, in the RHS of equation (6) we have

introduced the ¢*-dependent quantities Q¢ , v, and w, 5 de-
fined explicitly by

éj = (filT&l) ’kfkj + (fﬂTal) Jffki — fleakfij;l ()

va = f9T,V;, and wag = fU9T,,Ts; . (8)
As it turns out, iIf we assume
w = detwyg # 0, (9)

the whole set of constraints x,, withr = 1,..., 4 is second-
class. This can be seen by computing the Poisson brackets
among all constraints and writing the resulting constraint
matrix as

0 0 0 weg
) 00 was Dyg
Airsjap = Xmar X(s)p = | —Wa Mzﬁ Rzﬁ |
| ~Wap ~Pga —Hga Nag_

(10)
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forr,s=1,...,4, with the short-hand conventions

Dag = {X@)ar X()8t > Mag = {X(3)ar X(3)8} > (11)

and

Naﬁ = {X(4)ow X(4)6}7 Raﬂ — {X(B)aaX(zl)ﬁ}- (12)

In fact, the determinant of the constraint matrix (10) de-
pends only on its secondary diagonal and is given by

(13)

which clearly shows that, under the assumption (9), the pro-
totypical system (1) is indeed second-class.

For completeness and future reference, we compute the re-
maining further entries below the main diagonal in the con-
straint matrix (10) and write them explicitly as

Myp = fijpk [(fleaz) ’Z.Tﬂj — (fleﬁl)jiTaj] ZpkMéfﬁ,

Dozﬁ — Tai@%jpj (14)

4
det A(TS)@B = W

Nag = Pi [X(Wag @ — X104

= pipipkQug + PiVag + Pil ' Nog, (15)

and

Rozﬁ = pz’ijgﬁ + fijTozivﬁj + ﬂfijToziwﬁyj (16)

‘ 3. BFFT Constraints Abelianization |

The Batalin-Fradkin-Fradkina-Tyutin quantization approach
[2] aims to convert the second-class constraints, in our case
all X(r)a» 1O corresponding first-class ones by extending the

initial phase space (¢*, 1%, pi., 7 including new BFFT vari-
ables 1", For the present prototypical system, the in-
dexes run throughr =1,....,4, a =1,..., M, and we have
a total of 4M »(")® BFFT variables. The sought converted
constraints x,., can be expanded in a power series in the
auxiliary BFFT variables as [3, 4]

O
X(rja = 2_ Xirtgpany™ 0.
n=0

The converted first-class constraints x/,.,, will satisty follow-
ing conditions,

(17)

X(r)a = X(r)a (18)

and

Substituting (17) into (19) and picking up the resulting n(")®
zero-order term, it is straightforward to obtain the well-
known BFFT first-step-condition

1t
Arsjas = =X (ptpan@ X ()61, (20)

where w1217 defined as

Wrsel = (e *)0y (21)

characterizes the symplectic structure among the BFFT
variables. In practical terms, one chooses a convenient
w8)2% and solves (20) for X(rs)ag- FOr our current pro-
totypical second-class system, aiming to preserve the ini-
tial constraints original structure as much as possible, we
choose the symplectic BFFT algebra [3, 4]

0 0 0¥ q
5

(rs)af _ 0 0 0 o¢

“ _§B 0 0 0

0 —5 0 0

(22)

and consider a deformation in phase space induced by the
BFFT variables corresponding to the ansatz

)2(1)@ — Moy — 77&3) ’ )Z(Q)og — TOé + 77(<)42) ’

o _ (23)
X(S)oz = fU (pz' — TﬁinM)ﬂ) Tozj ;
and
8 1 ~ij
e = 20 (51— T %) (o — T,520)
—tg — P05 — wagn'V)” (24)

with all barred quantities depending only on the variables

¢~ and 779. Now it is straightforward to check that the con-
verted constraints (23) and (24) will generate the Abelian al-
gebra (19) if the barred quantities, generically represented

by F(¢" n?), satisfy the condition [3, 4]
Fz' — Tozi{F: 77(4)&} ;

Y

(29)
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The corresponding modified Hamiltonian in strong involu-
tion with the converted constraints can be directly obtained
from (2), considering the same deformation in phase space
introduced in equations (23) and (24), as

H = lf gk, ni) (pz‘ — Tpim? ) (pj - Tw”?<4”)

2

+Va )+ (1400 (Taleh) +0e”)  (26)
with

V= Toz’i{‘_/a 77(4)Q} :

I

4. Mechanical Example: Particle on torus |

Particle on torus is a two dimensional surface embedded
In three dimensional space. It has been studied by many
physicists as a simple three dimensional model for con-
strained motion [4]. Lagrangian for a particle constrained
to move on the surface of torus of radius r is

1 1 1

L= 5m7°°2 + émrzeg + ém(b + rsin (9)2q52 —I(r—a) (28)

(27)

where (r,60,¢) are toroidal co-ordinates. The canonical
Hamiltonian corresponding to the Lagrangian in eqn(28)is
then written as,

9 2
[ pi | P Py

+
2m  2mr?  2m(b 4+ rsin §)?

+l(r — a) (29)

where pr, pg,p, and py are the canonical momenta con-

jugate to the coordinate r, 8 ¢ and [ respectively. All the
constraints can be written as,

X1 =m0

X2 =T=(r—a)=0

p
X3 = prrTr:_T%O
m

1
X4 = 5{6299295 +Qp} — lw

1 pg pé sin 6
— { 3 +
momr

(30)

— ;=0
m(b + rsin 6)3 J

Thus the matrix A, between the constraints has the form

[0 0 0 L
0 0 L 0
Npg = — 1 3 (P2 p2sin® 0
e {Xﬁ XS}P 0 m 0 : W{% T (b—|—¢r sin 0)*
1 3 P p2sin® 0
\_ﬁ 0 _W{T_Z T (b—fr sin 9)4} 0
(31)
BFFT Converted constraints and Hamiltonian can be writ-
ten as,
X(1) = T — n'?)
Xy = (r—a)+n?
1 .
X(3) = —(pr — 77<4>)T
1 pg . ngb sin 0
X(4) m m(r + 77<2>)3 m|b+ (r + 77<2>) sin 6)]3
—1 - (32)
) _ (92 2 P
= + + ,
2m 2m(r + 77<2>)2 2m|b + (r + 77<2)) sin 62
+(1+ M) + 9 —a) (33)

t can easily be verified that the modified constraints and
Hamiltonian are involutive in nature.

5. Conclusion |

n this work we have successfully studied the constraint
structure and Abelianization procedure of a prototypical
nonlinear second-class system. We have also studied par-
ticle on torus as an example of this kind of system.
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