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Abstract

In mathematical physics, geometric quantization is a
method of defining quantum theory corresponding to an ex-
isting classical theory. It has been successfully applied to
many field theoretic models. Also, Constrained systems oc-
cur frequently in physics, since they typically arise in the
Hamiltonian formulation of classical sys- tems with gauge
symmetries. Here, we will try to understand the geometric
quantization from the perspective of a constrained system.

1. Introduction

Constrained systems occur frequently in physics, since
constraints typically arise in the Hamiltonian formulation
of classical systems with (gauge) symmetries [1]. There-
fore their quantisation deserves particular attention and
numerous devices have been developed to handle such
situ- ations. A quantisation scheme which seems partic-
ularly well adapted to this goal but nevertheless some-
what neglected is geometric quantisation [2], since it-like
constrained systems [3]-admits a very ‘symplectic’ formu-
lation. Thus classical concepts of these systems are most
easily incorporated into the quantum theory. Previous in-
vestigations of the applicability of geometric quantisation
to constrained systems have been performed by Gotay [3]
Ashtekar and Stillerman [4] and Blau [5].

2. Geometry of Constrained Systems

Classical Hamiltonian mechanics finds its natural setting in
the framework of symplectic geometry. A manifold is called
symplectic if it carries a closed non-degenerate 2-form ω
and cotangent bundles (i.e. M = T ⋆Q for some ‘configura-
tion’ manifold Q; ω is the canonical 2-form). The symplectic
form ω gives rise to an isomorphism between the tangent
and cotangent bundles of M, and defines a Poisson bracket
{, } on C∞(M). In local coordinates on T ⋆Q, ω takes the
familiar form w = dqk ∧ dpk. M represents the phase space
of a dynamical system.
In many physically important examples, however, only a
submanifold M̄ of M is classically accessible for the system.
This manifold can (locally) be described by the vanishing of
certain ‘constraint’ functions [1] ϕα, α = 1, ...,m, and if the
Poisson bracket between any two constraints vanishes on
M (i.e. {ϕα, ϕβ} = C

γ
αβϕγ for some functions Cγαβ), the con-

straints are said to be first class.
In this work we shall restrict our attention to first-class con-
straints for two reasons: they are the most frequent and im-
portant, generally arising as the consequence of a classical
‘gauge’ symmetry; and constraints which are not first class
can be eliminated by the introduction of Dirac brackets or by
regarding them as gauge fixing constraints of a bigger (first-
class) theory. The first-class property can be invariantly ex-
pressed by saying that M̄ is a co-isotropic submanifold of
M, i.e. TM̄⊥ ⊂ TM̄ , where ()⊥’ denotes the orthogonal
complement in TM̄M with respect to ω. Since ω is closed,
TM̄⊥ is integrable, giving rise to the so-called null foliation
of the constraint surface. We shall assume that this folia-
tion is actually a fibration and denote the quotient of M̄ by
the integral manifolds of TM̄⊥ by M̂ . M̂ is called the re-
duced phase space (or ‘space of true degrees of freedom’,
since TM̄⊥ is spanned by the Hamiltonian vector fields of
the constraints).
Finally two functions f and g on M are regarded as equiva-
lent if they are equal on M̄ , and a function f on M is called
weakly gauge invariant if {f, ϕα} vanishes on M for all con-
straints, i.e. if {f, ϕα} = f

β
αϕβ for some functions fβα . Ob-

servables are to be identified with equivalence classes of
weakly gauge-invariant functions.

3. Geometric Qunatization

Geometric quantisation [2], developed independently by
Kostant and Souriau is a mathematically well defined geo-
metrical quantisation scheme (an assignment of unitary op-
erators on a Hilbert space to classical observables), which
generalises and makes rigorous the usual canonical quan-
tisation procedure.

The Hilbert space of states is constructed from the space
of sections of a complex line bundle L over the symplectic
manifold (M,ω) . A connection ∇ on L allows one to lift
vector fields on M to L and thus in particular to associate
linear differential operators (acting on sections of L ) with
functions on M (via their Hamiltonian vector fields). In order
to enforce the basic Poisson bracket-commutator relation,
the curvature of ∇ is required to be proportional to (the pull
back of) ω. If ∇ is additionally compatible with a Hermi-
tian structure on the fibres of L, the pair (L,∇) is called a
‘prequantisation’ of M and exists iff ω defines an integral
cohomology class on M (since it represents the first Chern
class of L ). The prequantum operator corresponding to an
observable f (denoted by Of ) is defined by

Of := (
ℏ
i
)∇Xf

+ f (1)

where Xf , is the Hamiltonian vector field of f, and satisfies

[Of , Og] = iℏO{f,g} (2)

for all f, g ∈ C∞(M) If (M,ω) = (T ∗Q,−dθ) the cohomology
class of ω is trivial and thus L ≃ M × C.Sections of L can
then be identified with functions on M and the prequantum
Hilbert space H is isomorphic to L2(M,ωn). In this case ∇
and Of , explicitly are

∇X = X − (i/ℏ)θX (3)

and
Of = (ℏ/i)Xf + (f − θ(Xf )) (4)

In order to reduce the Hilbert space H of sections of L
(square integrable with respect to the Liouville measure)
to a physically more reasonable Hilbert space of sections
depending on half the number of variables, one introduces
what is called a polarisation P: an involutive n(= dimM)-
dimensional Lagrangian (P⊥ = P ) distribution on M. Then
one regards only those sections as representing physical
states which are covariantly constant along P with respect
to ∇. The resulting linear space of ’polarised sections’ (yet
to be equipped with a scalar product) will be denoted by
PH.
If the space of integral manifolds of P (denoted Mp) has the
structure of a Hausdorff manifold, P is called admissible or
reducible.
Locally a polarisation is spanned by n Hamiltonian vector
fields Xf k, and the requirement of being Lagrangian trans-
lates into the condition {f i, fk} = 0. Thus the notion of a
polarisation generalises the traditional concept of ’a com-
plete set of commuting observables’.
If M = T ⋆Q there is a natural polarisation called the ver-
tical polarisation vp, whose integral manifolds are the fi-
bres of π : T ⋆Q → Q. It is spanned by the vector fields
d/dpk and the corresponding complete set of observables
is qk. Polarised elements of the prequantum Hilbert space
H can be identified with functions on Mp = T ⋆Qvp = Q and
vpH ≃ L2(Q).
Iff P is invariant under the flow generated by f,i.e. iff
[Xf , u] ⊂ P, ∀u ∈ P then the prequantum operators Of ,
are compatible with P in the sense that they map polarised
states to polarised states. Observables f satisfying this con-
dition are called quantisable with respect to P.

4. Geometric Qunatization of a Constrained System

Let M̄ be a coisotropic submanifold of M and M̂ the reduced
phase space. Under reasonable conditions M̂ is symplec-
tomorphic to the cotangent bundle of a reduced configura-
tion space Q̂, perhaps equipped with a non-canonical sym-
plectic structure [3, 4, 5].
In the quantisation of this system we are confronted with
different physically reasonable alternatives. (i) (’Dirac’ or
’prequantum operator constraint’ method.) The prequan-
tum Hilbert space H will consist of functions ψ on M, con-
straints will be imposed as prequantum operator constraints
(i.e. Oα, ψ := Oϕαψ = 0) on H and a polarisation P is
introduced on M. Physical states will then be elements of
ker 0α ∩ PH =: H. (ii) (Reduced phase space method.)
The prequantum Hilbert space Ĥ consists of functions ψ̂ on

M̂ and a polarisation P̂ defines the space of physical states
P̂ Ĥ.

4.1 Prequantization
Let {ϕα, α = 1, ...,m} be a set of constraint functions on M
satisfying (1) and (2), and let H be the prequantum Hilbert
space L2(T ⋆Q,ωn) . Then a tempting way of imposing the
constraints ϕα, at the (pre)quantum level is to realise them
as prequantum operator constraints on H Oαψ = 0 (α =
1, ...,m) (where we have set Oα, := Oϕα). By virtue of (2) we
have

[Oα, Oβ] = iℏO{α,β} := iℏO{ϕα,ϕβ} (5)

and the conditions (5) are internally consistent if the struc-
ture functions Cγαβ are constants. In the general case how-
ever these conditions imply non-trivial integra- bility condi-
tions. This can be seen by noting that the prequantum op-
erator correspond- ing to the product of two functions f and
g is neither the product of the operators Of and Og, nor of
the form fOg + gOf but rather is given by the expression

Ofg = fOg + gOf − fg (6)

4.2 Polarisation
Assuming for the moment that the Cγαβ are indeed constant
we can pursue the geometric quantisation programme out-
lined above by introduction of a polarisation P on M. In order
that Oα maps polarised states to polarised states the con-
straints ϕα, must be quantisable with respect to P, i.e. P
must satisfy

[Xα, u] ⊂ P (7)

(Xα := Xϕα). This incidentally shows that in the case
M = T ⋆Q the usual vertical polarisation vp is inappropri-
ate if the constraints are more than linear in the momenta.
This observation is almost certainly relevant for the study
of (toy models of) quantum gravity, where the Hamiltonian
constraint is indeed quadratic in the momenta.
Following [4, 5] a polarisation P satisfying (7) will be called
‘compatible with the constraints’. It is important to realise
that this notion of compatibility depends not only on M and
M̄ , but also on the particular choice of constraints ϕα, used
to define the constraint surface. Thus reparametrising the
surface will require a new polarisation.
Taking the intersection of a compatible P with TM̄ and ad-
joining the ‘gauge’ directions Xα , not already contained in
this intersection one obtains a sub-bundle P̄ of TM̄ with the
following properties. (i) dim p̄m̄ = n ∀m̄ ∈ M̄ . (ii) The pull-
back of ω to p̄m̄ is zero. (iii) P̄ is integrable. (iv) P̄ contains
all gauge directions. (Integrability of P̄ requires the compat-
ibility of P.) Generally a distribution on M̄ satisfying these
four conditions (whether it was obtained from a polarisation
on M or not) will be called ‘constrained polarisation’ and it
is easy to see [4] that there is a 1 : 1 correspondence be-
tween these constrained polarisations and genuine polari-
sations on M̂ . Furthermore, there is a natural isomorphism
between

P̄ H̄ := {ψ̄ ∈ H̄ : ∇ūψ̄ = 0,∀ū ∈ P̄} (8)

and P̂ Ĥ, where P̂ = T π̃P̄ .
Furthermore, every element of P satisfying the prequantum
operator constraints (5) yields-upon restriction to M̄ - an el-
ement of P̄ H̄.

5. Conclusion

In this work we have successfully tried to understand the
geometric quantization of a Constrained system.
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