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Abstract
We have calculated microscopically electrical conduc-
tivity of massless quark matter by using relaxation
time approximation of kinetic theory framework. The
lowest possible quark relaxation time, tuned from the
quantum lower bound of η/s for massless matter, is
used to obtain its corresponding electrical conductiv-
ity σ/T = 0.0135. By comparing with earlier existing
numerical values of electrical conductivity, we marked
roughly (0.25− 15) × 0.0135 as strongly and beyond
20 × 0.0135 as weakly quark gluon plasma domain.

Introduction

Figure 1: Heavy ion collision, QGP formation and its
evolution

• Huge magnetic field produced in heavy ion
collisions (HIC) has m2

π in RHIC energy and
10m2

π in LHC energy that will decay with time
Refs. [1, 2, 3].

• The decay time with respect to QGP life time
decides whether QGP face strong [1] or
weak [2, 3] magnetic field.

• The electrical conductivity of QGP controls the
decay profile [1].

• The shear relaxation time scale (τc) can be ex-
pected to be close to its lower bound τc =

5/(4πT) (massless QGP) as η/s of QGP is ex-
perimentally expected to be close to its quantum
lower bound. η/s = 1/(4π).

• So present work has explored its numerical values
from different microscopic models and their corre-
sponding effective relaxation time scales and the
numerical bands of the electric charge relaxation
time scale in terms of the lower bound of shear
relaxation time.

Framework
• The dissipative current density JD due to

external electric field Ẽ in microscopic relation

JiD = g
∑
u,d

eQ

∫
d3p
(2π)3

pi

E
δfσ , (1)

where g = 12 (total degeneracy factor of quark,
spin, particle-anti-particle and color)

• The δf is the deviation from equilibrium
distribution function f0 = 1/[exp(βE) + 1].

• Relaxation time approximation(RTA) of
Boltzmann transport equation,

eQẼ
i ∂f

∂pi
= −

δf

τc
, (2)

δf =
eQ

(pi

E

)
τcβf0(1− f0)

Ẽi . (3)

• The Eq.(1) becomes

Ji = g
∑
u,d

∫
e2Q

d3p
(2π)3

pipj

E2
τcβf0(1− f0)Ẽj . (4)

• Comparison with the macroscopic description, Ji,

σ =
g

T

∑
u,d

e2Q

∫
d3p
(2π)3

p2

3E2
τcf0(1− f0) . (5)

Result and discussions
• Massless limit E = p in Eq. (5) [4]

σ =
10

27
e2τcT

2, (6)

• Lower bound of η/s for that medium and lower
bound of relaxation time[4],

η

s
=

τcT

5
=

1

4π
, =⇒ τc =

5

4πT
. (7)

• The conductivity

σ(T) =
25

54

e2

π
T ≈ 0.0135T . (8)
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Figure 2: Normalised conductivity of different estima-
tions with temperature, based on NJL (blue dash-
dotted line), BAMPS (violet dash-double dotted line)
and uniterization (pink dash line) with respect to the
massless sQGP estimation (red dotted line)

• We assumed σ/T = 0.0135 as lowest reference
point, plotted it by red dotted line marking as
sQGP.

• The results of σ/T from Refs.[5] , [6] , [7] covers
a large numerical band of electrical conductivity.

• In Ref. [5](the transport quark model), its
estimated values ≈ 5 times the massless sQGP
values.

• In Ref. [6](an effective QCD model), its values
are in the range 5-15 times larger than 0.0135.

• Hadronic conductivity estimation, based on
unitarization methodology, is close to 0.0135.

• LQCD calculations [10] provides 0.003 to 0.015.
• It means that 4 times smaller than 0.0135 should

have to be considered also within the numerical
band of σ/T .

• The numerical band of σ/T from 0.003 to 0.2
might be considered as sQGP domain for elec-
trical conductivity because weakly QGP (w-QGP)
estimation from perturbative QCD (pQCD) cal-
culation [8, 9] provides more than 20 times larger
values of η/s with respect to its quantum lower
bound 1/(4π) ≈ 0.08.

• τc may be larger than 25/(πT) and using that re-
laxation time range for electrical conductivity, one
can expect σ/T ≥ 20×0.0135 as wQGP domain.

• Our exploration of sQGP and wQGP domain of
σ/T might be very important information for de-
cay profile of magnetic field.

Summary and conclusions

• Microscopically electrical conductivity of massless
quark matter have been calculated.

• The lowest possible relaxation time for massless
matter is derived from quantum lower bound of
η/s.

• Electric charge transportation in terms of that
quantum bound. σ/T = 0.0135 might be
considered as a reference point for charge
transportation of QGP.

• LQCD estimations of σ/T can be 4 times smaller
to 3 times larger than 0.0135 by comparing with
earlier existing numerical values.

• The ratio may go up to 15 times larger than
0.0135 from earlier model calculations like NJL,
BAMPS, and unitarization.

• So we may assign roughly
σ/T = (0.25− 15) × 0.0135 as sQGP domain.

• Since earlier perturbative QCD calculation by
Arnold et. al. indicate 20 × 0.0135 and, beyond
this range, it can be considered as wQGP domain.

• These strongly and weakly interacting domains of
σ will be very important inputs to investigate the
decay profile of magnetic field in HIC experiments.
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