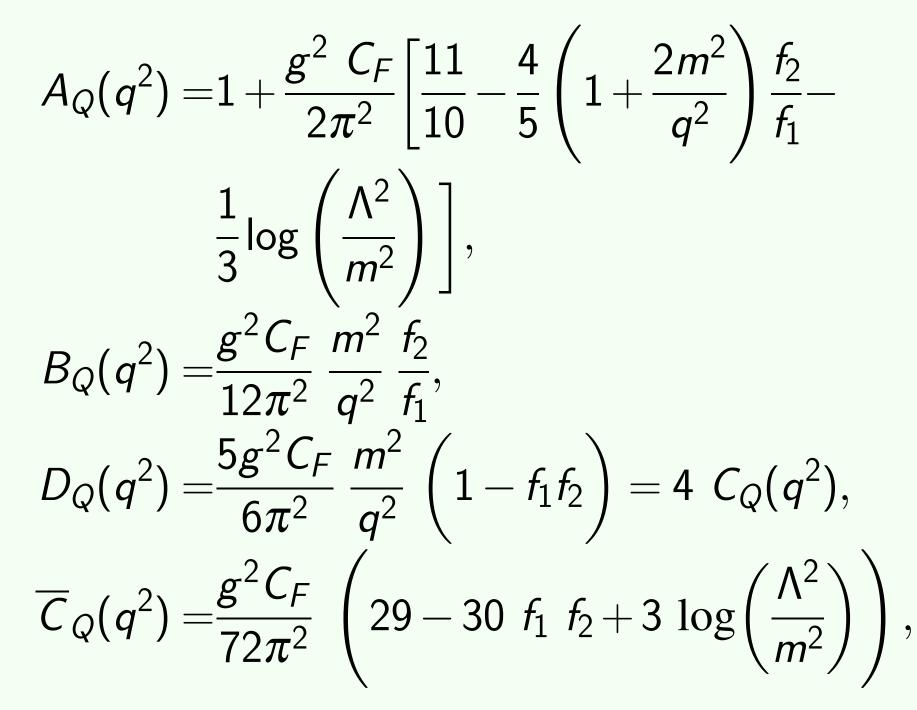

XXV DAE-BRNS HEP Symposium 2022 Mechanical Properties and Gravitational Form Factors of a Dressed Quark in Light-Front Hamiltonian QCD

Sudeep Saha^{1‡}, Jai More^{1*}, Asmita Mukherjee^{1†}, Sreeraj Nair^{2,3,4‡}

¹Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India ²Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ³School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China ⁴CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

 ‡ sudeepsaha@iitb.ac.in, *jai.more@iitb.ac.in, † asmita@phy.iitb.ac.in, ‡ sreeraj@impcas.ac.cn


1. Introduction

A major interest in hadron physics and QCD is, understanding the mechanical properties like mass, angular momentum, and pressure distribution inside the nucleon in terms of quarks and gluons.

- These mechanical properties are encoded in gravitational form factors (GFFs). They are functions of the square of the momentum transfer (q^2) in the process.
- GFFs are related to generalized parton distributions (GPDs), and can be accessed in exclusive electron-proton scattering process, e.g. deeply virtual compton scattering (DVCS).
- $p(b^{\perp})$ calculated from the data is found to be repulsive at the core and attractive towards the periphery.
- Theoretical models on p(b[⊥]) and s(b[⊥]) distributions: Bag model, chiral quark soliton model, AdS/QCD motivated quark-diquark model, multipole model. But these are phenomenological models and do not incorporate any gluonic degree of freedom. Lattice results are also there.
- Total quark + gluon EMT:

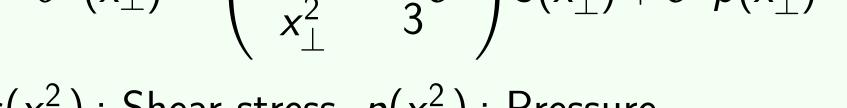
 $heta^{ij}(x_{\perp}) = \left(rac{x_{\perp}^{i}x_{\perp}^{j}}{x_{\perp}^{2}} - rac{1}{3}\delta^{ij}
ight)s(x_{\perp}^{2}) + \delta^{ij}p(x_{\perp}^{2})$

6. Results

• $A(q^2)$, $B(q^2)$, $C(q^2)$ and $\overline{C}(q^2)$ are four GFFs of a spin $-\frac{1}{2}$ system.

2. Gravitational Form Factors

• The electromagnetic interaction of a nucleon with an external EM field is described by $\langle p'|J^{\mu}|p\rangle A_{\mu}$,

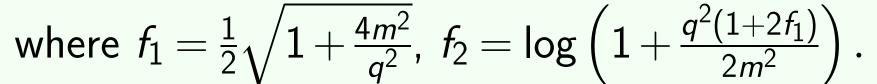

 $\langle P'|J_q^0|P
angle A_0=2e_q\;M\phi\mid_{({
m Rest frame})}$

Interaction of a nucleon with the weak classical gravitational field is

 $\frac{1}{2}\sum_{q,G} \langle P'|\theta_{q,G}^{\mu\nu}|P\rangle h_{\mu\nu} = 2M \ M\phi \mid \text{(Rest frame)}$

- $\langle P'|\theta_{q,G}^{\mu\nu}|P\rangle$ is the current that couples to gravity.
- The standard parametrization for spin $-\frac{1}{2}$ system in QCD:

 $egin{aligned} &\langle P',S'| heta_i^{\mu
u}(0)|P,S
angle = \overline{U}(P',S')iggl[-B_i(q^2)rac{\overline{P}^\mu\ \overline{P}^
u}{M}\ + igl(A_i(q^2)+B_i(q^2)igr)rac{1}{2}(\gamma^\mu\overline{P}^
u+\gamma^
u\overline{P}^\mu) \end{aligned}$



 $s(x_{\perp}^2)$: Shear stress, $p(x_{\perp}^2)$: Pressure.

4. Dressed Quark Model (DQM)

- A simple relativistic spin-1/2 state, like a quark dressed with a gluon at one loop in QCD.
- This model employs a gluonic degree of freedom.
- The dressed quark state can be expanded in Fock space in terms of multiparton light-front wave-functions (LFWFs), which can be calculated using the light-front Hamiltonian.
- LFWFs can be written in terms of relative momenta that are frame-independent. Thus, LFWFs are boost invariant.

 $egin{aligned} |P,\lambda
angle =& \psi_1(P,\lambda) b^{\dagger}_{\lambda}(P) |0
angle\ &+ \sum_{\lambda_1,\lambda_2} \int [k_1] [k_2] \sqrt{2(2\pi)^3 P^+} \delta^3(P-k_1-k_2)\ & imes \psi_2(P,\lambda|k_1,\lambda_1;k_2,\lambda_2) b^{\dagger}_{\lambda_1}(k_1) a^{\dagger}_{\lambda_2}(k_2) |0
angle,\ &dk^+ d^2 k^\perp \end{aligned}$

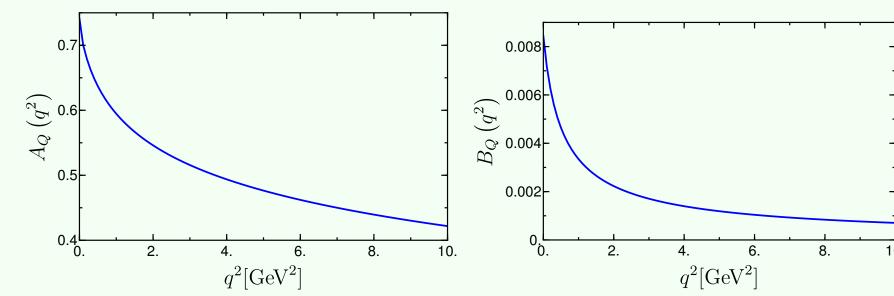
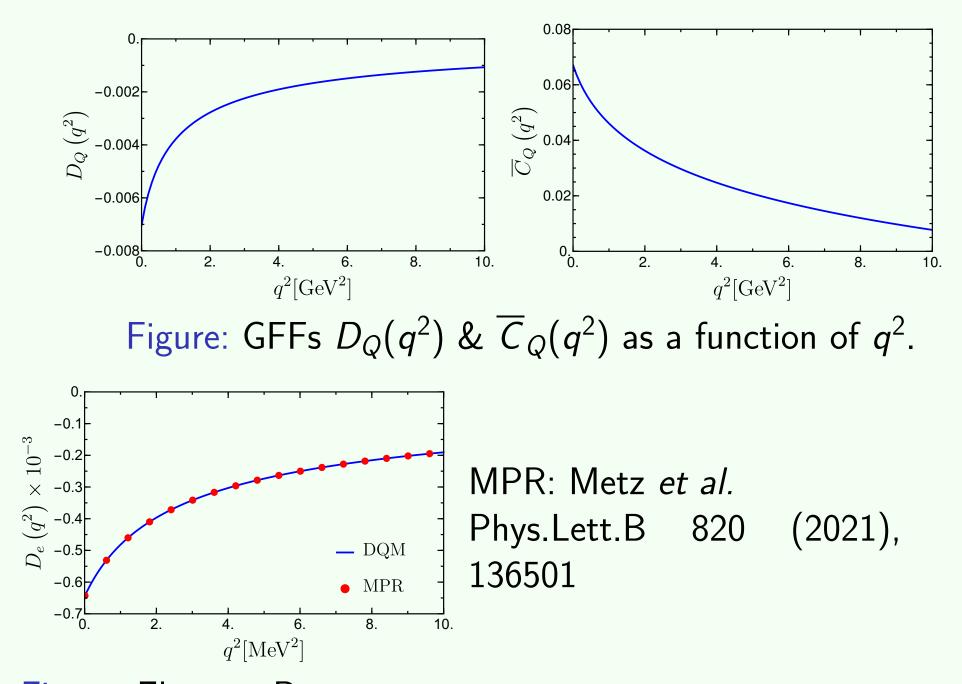
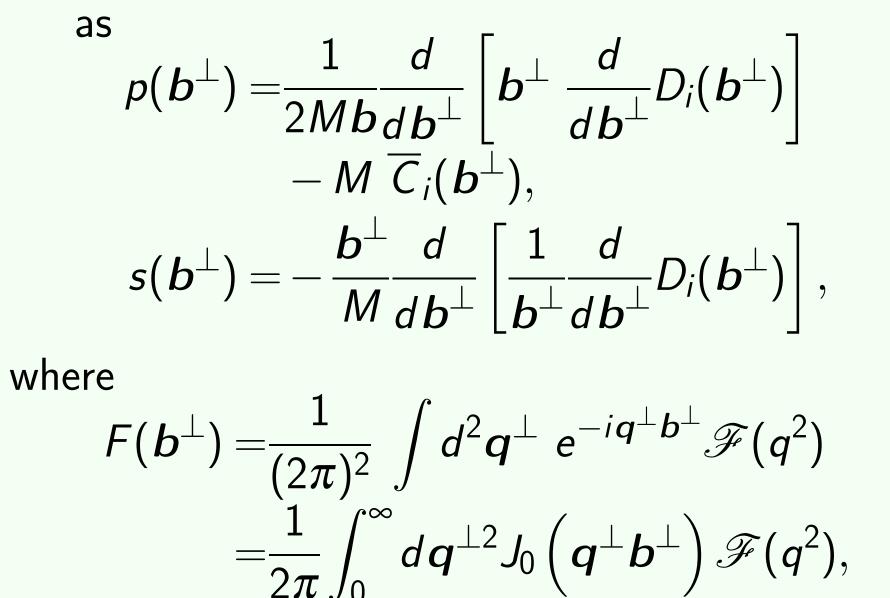



Figure: GFFs $A_Q(q^2)$ & $B_Q(q^2)$ as a function of q^2 .

$$+C_i(q^2)\frac{q^{\mu}q^{\nu}-q^2g^{\mu\nu}}{M}+\overline{C}_i(q^2)Mg^{\mu\nu}\bigg]U(P,S),$$


where $\overline{P}^{\mu} = \frac{1}{2}(P'+P)^{\mu}$, $\overline{U}(P',S')$, U(P,S) are the Dirac spinors and M is the mass of the target state, $i \equiv (Q,G)$.

Sum Rules:

 $\sum_{\substack{(i=Q,G) \\ \text{Ji's sum rule: } A_i(0) = 1, \ \sum_{\substack{(i=Q,G) \\ Q_i = 0}} B_i(0) = 0.}$ Ji's sum rule: $A(x) + B(x) = \frac{1}{2}, \ B(0) = 0, \ J(0) = \frac{1}{2}.$ $\partial_{\mu} \theta^{\mu\nu} = 0 \rightarrow \sum_{\substack{(i=Q,G) \\ \overline{C}_i(q^2) = 0}} \overline{C}_i(q^2) = 0.$

3. D-term and Mechanical Properties

- The $C_i(q^2)$ form factor also known as D-term is unconstrained at zero momentum transfer.
- $D_i(q^2) = 4C_i(q^2)$ is related to the pressure $p(b^{\perp})$ and shear $s(b^{\perp})$ distributions inside the nucleon

where
$$[k] = \frac{1}{\sqrt{2(2\pi)^3 k^+}}, \psi_1$$
: Normalization.

Under Jacobi transformation,

$$egin{aligned} & \kappa_i^+ = \kappa_i^\perp + \kappa_i \mathcal{P}^\perp, \, \kappa_1 + \kappa_2 = 1, \ & \kappa_1^\perp + \kappa_2^\perp = 0, \ & \kappa_1^\perp + \kappa_2^\perp = 0, \ & \kappa_1^\perp = \left[rac{x(1-x)}{\kappa^{\perp 2} + m^2(1-x)^2}
ight]rac{\mathcal{g}}{\sqrt{2(2\pi)^3}} \ & imes rac{T^a}{\sqrt{1-x}}\chi_{\lambda_1}^\dagger \left[rac{-2(\kappa^\perp\cdot\mathcal{E}_{\lambda_2}^{\perp*})}{1-x} \ & -rac{1}{x}(ilde{\sigma}^\perp\cdot\kappa^\perp)(ilde{\sigma}^\perp\cdot\mathcal{E}_{\lambda_2}^{\perp*}) \ & + im(ilde{\sigma}^\perp\cdot\mathcal{E}_{\lambda_2}^{\perp*})rac{1-x}{x}
ight]\chi_\lambda\psi_1^\lambda, \end{aligned}$$

where $\phi_{\lambda_1,\lambda_2}^{\lambda a}(x_i, \kappa_i^{\perp}) = \sqrt{P^+} \psi_2(P, \lambda | k_1, \lambda_1; k_2, \lambda_2), g$: quark-gluon coupling, T^a : colour SU(3) matrices, $\varepsilon_{\lambda_2}^{\perp}$: polarization vector of gluon, m: quark mass, χ_{λ} : two-component spinor for the quark respectively, $\lambda = 1, 2$: helicity up/down, $\tilde{\sigma}_1 = \sigma_2, \ \tilde{\sigma}_2 = -\sigma_1$.

5. Matrix Elements of EMT &

Figure: Electron D-term as a function of q^2 .

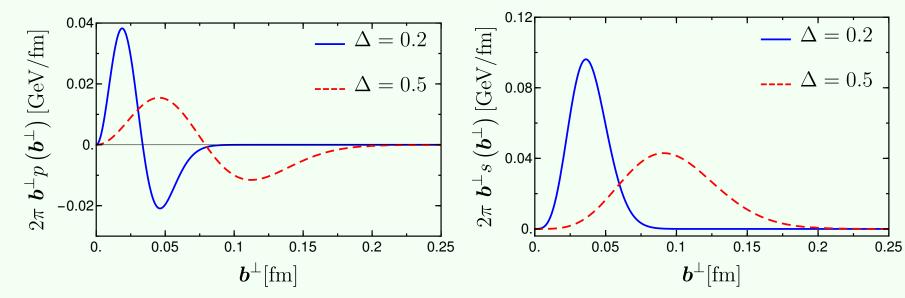


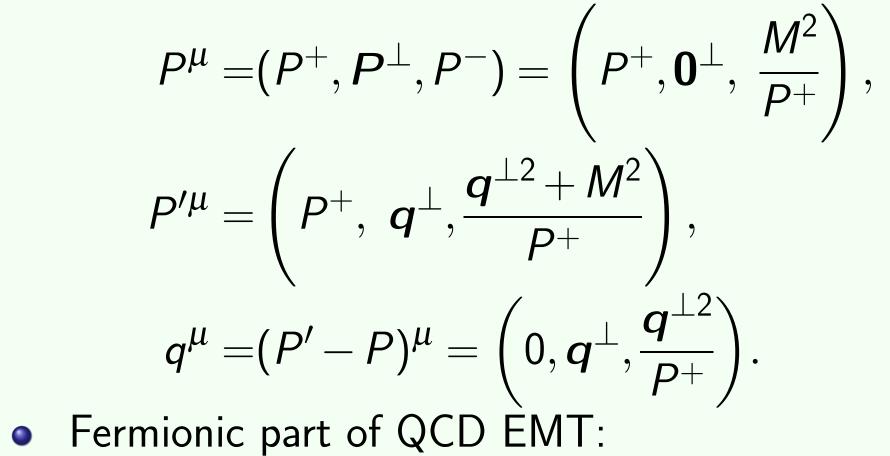
Figure: $2\pi b^{\perp} p(b^{\perp}) \& 2\pi b^{\perp} s(b^{\perp})$ as a function of b^{\perp} .

Gaussian Wave Packet state:

$$rac{1}{16\pi^3} \int rac{d^2 p^\perp dp^+}{p^+} \phi\left(p
ight) \mid p^+, p^\perp, \lambda
angle,$$

with $\phi(p) = p^+ \; \delta(p^+ - p_0^+) \; e^{-rac{p^{\perp 2}}{2\Delta^2}}.$

7. Conclusions


- We have studied the four gravitational form factors in a composite spin-1/2 system, a quark dressed with a gluon at one loop level in QCD.
- We have also analysed the pressure and shear distributions in this model.

- where $\mathscr{F} = (A, B, C, \overline{C})$, J_0 : Bessel function of zeroth order, b^{\perp} : impact parameter, M: mass of the dressed quark state.
- D-term has been extracted from the Jlab data and it is found to be negative.

Extraction of GFFs

• Two component formulation of light-front QCD, with $A^+ = 0$.

Drell-Yan frame:

 $heta_Q^{\mu\nu} = rac{1}{2} \overline{\psi} i \left[\gamma^\mu D^
u + \gamma^
u D^\mu \right] \psi.$

8. Acknowledgements

We thank S. Brodsky for his helpful comments. J. M. thanks the Department of Science and Technology (DST), Government of India, for financial support through Grant No. SR/WOS-A/PM-6/2019(G). S. N. thanks the Chinese Academy of Sciences Presidents International Fellowship Initiative for the support via Grant No. 2021PM0021. A. M. would like to thank Science and Engineering Research Board- Promoting Opportunities for Women in Exploratory Research Fellowship (SPF/2021/000102) for financial support.

9. Reference

S. Saha et al. Phys.Rev.D 105 (2022) 5, 056017