XXV DAE-BRNS High Energy Physics Symposium 2022

Contribution ID: 94

Type: Poster

Implications of Dark- θ_{12} Solution on Two-zero Texture Inverse Neutrino Mass Matrix

Friday 16 December 2022 14:00 (1 hour)

We investigate the possibility of two-zeros in inverse neutrino mass matrix (M_{ν}^{-1}) in light of "dark" large mixing angle (dark- θ_{12}) solution to the solar neutrino problem where solar mixing angle lies in the second octant ($\sin^2 \theta_{12} \simeq 0.7$). The zeros in right-handed Majorana neutrino mass matrix M_R corresponds to the zeros in M_{ν}^{-1} if Dirac and charged lepton mass matrices are diagonal. Out of fifteen possible two-zero textures, only seven are found to be consistent with dark- θ_{12} solution. All the textures with vanishing (1,1) element are found to be inconsistent with dark- θ_{12} solution. We, also, obtained predictions of the model for $0\nu\beta\beta$ amplitude $|M_{ee}|$. For five out of seven allowed textures, the predicted 3σ lower bound on $0\nu\beta\beta$ amplitude $|M_{ee}|$ is $\mathcal{O}(10^{-2})$ which is within the sensitivity reach of $0\nu\beta\beta$ decay experiments like SuperNEMO, KamLAND-Zen, NEXT and nEXO. Furthermore, these textures are found to be necessarily CP-violating. Within Type-I seesaw setting, we have shown that the allowed M_{ν}^{-1} textures can be realized using A_4 discrete flavor symmetry wherein the standard model particle content has been enlarged with three right-handed neutrinos and a scalar singlet field.

Session

Neutrino Physics

Primary authors: SINGH, Labh; KASHAV, Monal (Central University of Himachal Pradesh, INDIA); VERMA, Surender (Central University of Himachal Pradesh, INDIA)

Presenter: SINGH, Labh

Session Classification: Poster - 4