Time-integrated raw asymmetry in $D^0 \longrightarrow K^+ K^-$ [7]

Sanjeeda Bharati Das¹, Kavita Lalwani¹, Angelo Di Canto² ¹MNIT Jaipur, India, ²BNL, USA

XXV DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM, December 12-16, 2022 @ IISER Mohali

Physics Motivation

• $D^0 \longrightarrow K^0_S K^0_S$ is a Singly Cabibbo Suppressed (SCS) decay, which involves the interference of $c\overline{u} \longrightarrow s\overline{s}$ and $c\overline{u} \longrightarrow d\overline{d}$ transitions, due to which the CP Asymmetry (\mathcal{A}_{CP}) may be enhanced to an observable level within the Standard Model.

- Previous Belle measurement (Phys. Rev. Lett. 119 171801): $\mathcal{A}_{CP}(D^0 \longrightarrow K_S^0 K_S^0) = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$.
- We intend to use $D^0 \longrightarrow K^+K^-$ as the control sample in the measurement of $\mathcal{A}_{CP}(D^0 \longrightarrow K^0_S K^0_S)$. The (\mathcal{A}_{CP}) in $D^0 \longrightarrow K^+K^-$ is measured with 0.11% precision (as per the Heavy Flavour Averaging Group) and is expected to improve.
- Here, we measure the signal yield time integrated raw asymmetry (A_{raw}) in $D^0 \longrightarrow K^+K^-$ using Belle II simulation.

Sample and Selection Criteria

- 88fb^{-1} of Monte Carlo sample.
- $D^0 \longrightarrow K^+ K^-$ are reconstructed using tracks of two oppositely charged kaons for which, $\mathcal{L}_K/(\mathcal{L}_K + \mathcal{L}_{\pi/e})$ is greater than 0.6(0.1).
- The D^0 thus reconstructed is combined with low momentum pions (π_s) to form the $D^{*+} \longrightarrow D^0 \pi_s^+$ decay.

Results

• Shown below are the distributions of $m(K^+K^-)$ (left) and $m(D^0\pi_s)$ (right) for D^0 sample (top) and \overline{D}^0 (bottom), with fit projections overlaid.

Fit strategy

• An unbinned maximum likelihood fit to $(m(K^+K^-), m(D^0\pi_s))$ is performed to measure A_{raw} defined as:

$$egin{aligned} A_{raw} = rac{N(D^0) - N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)} \end{aligned}$$

where, $N(D^0)$ is the measured yield of the D^0 decay while $N(\overline{D}^0)$ is that of the corresponding \overline{D}^0 decay.

• $m(D^0\pi_s)$ is essentially the mass of the D^* but with no mass hypothesis on the D^0 daughters A. Di Canto, FERMILAB-THESIS-2011-29.

• All $D^{*+} \longrightarrow D^0(\longrightarrow h^+h^-)\pi^+$ decays

Probability density functions (PDF) of each components are tabulated below. The colours in table represent the corresponding components in the plots.

• All $D^+ \longrightarrow D^- (\longrightarrow n^+n^-)\pi^+$ decays have identical $m(D^0\pi_s)$) distributions unlike the conventional Δ m, thereby largely simplifying the fit. Here, $\Delta m = m(D^*) - m(D^0)$.

• Except the the yields and corresponding raw asymmetries, all fit parameters, are fixed to the values obtained from separate fits to the components.

Summary

• A detailed background study of the decay $D^0 \longrightarrow K^+ K^-$ is performed.

• Total signal yield and A_{raw} and are measured in simulation, using a simultaneous fit to $(m(K^+K^-), m(D^0\pi_s))$.

Components	$m(D^0\pi_s)$	$m(K^+K^-)$
$D^* \longrightarrow D^0 (\longrightarrow KK) \pi_s$	Double gaussian + Johnson	Double gaussian +Johnson
$D^* \longrightarrow D^0 (\longrightarrow K \pi) \pi_s$	Double gaussian + Johnson	Gaussian+Johnson
$D^* \longrightarrow D^0 (\longrightarrow multibody) \pi_s$	Johnson	Exponential
$D^0 \longrightarrow KK + ext{random pion}$	$(x-x_0)^{1/2}+lpha(x-x_0)^{3/2}$	Corresponding $m(K^+K^-)$
$D^0 \longrightarrow K\pi + ext{random pion}$	$(x-x_0)^{1/2}+lpha(x-x_0)^{3/2}$	Corresponding $m(K^+K^-)$
$D^0 \longrightarrow multibody + ext{random pion}$	$(x-x_0)^{1/2} + lpha (x-x_0)^{3/2}$	Corresponding $m(K^+K^-)$
$D_s \longrightarrow KK\pi$	1^{st} order Chebyshev	Johnson
Combinatorial	$(x-x_0)^{1/2}+lpha(x-x_0)^{3/2}$	1^{st} order Chebyshev

• $D^0 \longrightarrow multibody$ includes, semileptonic, $K\pi\pi^0$ decays. Also, $x_0 = 2.00441$, the threshold.

• Same PDF model is assumed for both, D^0 and \overline{D}^0 samples.

• Results:

– Total Signal Yield = 36795 ± 199 .

 $-A_{raw} = 0.0231 \pm 0.0054.$