Search for Vector-Like Quarks $(T' \rightarrow t(Wb)H(WW^*) \rightarrow t(I\nu b)H(4q))$ Decay with the CMS Detector at centre of mass energy 13 TeV.

Arjun Chhetri* , Brajesh C. Choudhary

University of Delhi

XXV DAE-BRNS HEP Symposium 2022, IISER Mohali

December 14, 2022

Introduction: Vector-Like Quarks

• Motivations :

- The observed lightness of Higgs mass
- Divergence in radiative corrections to Higgs boson mass
- High Yukawa coupling of top quark associated with Higgs boson

• Vector like quarks(VLQ):

- Hypothetical spin 1/2 particles with color charge
 - Left & right handed components behave same
- Mass for VLQ is independent of Yukawa couplings to a Higgs doublet
- Decay through mixing with SM quarks
 - $T' \rightarrow W + b$, $T' \rightarrow Z + t, ~ \textbf{T'} \rightarrow \textbf{H} + \textbf{t}$
- Production via
 - QCD processes \rightarrow Pair production cross section depends on $M_{\textit{VLQ}}$
 - Single production from SM quarks and EW gauge bosons→ Couplings are of EW strength or below

Pair production

Single production

The CMS Detector

- CMS detector is one of the general purpose detectors, collecting data in the LHC beamline
- Consists of sub-detectors:
 - Tracking System
 - Electromagnetic Calorimeter
 - Hadronic Calorimeter
 - Magnet System of strength 3.8T
 - Muon System
- For full LHC-Run2, CMS has collected and processed data of Total Integrated Luminosity(∫L.dt=137 fb⁻¹)

T' Decay: Feynman Diagram

- Dominant background are from top-like events(ttbar and single top)
- Secondary background are QCD multijets, Wjets, DYjets

Forward dijet Definition

• Forward jet based on presence of pair of associated jets with large $\Delta\eta$ leading to high dijet mass

- Forward dijet is defined as pair of jet having highest $\Delta\eta$ among all jets in the event
- $\Delta\eta$ and dijet mass distribution of forward dijet are compared for signal and background

- Background events have low $\Delta\eta$ and low dijet mass
- Signal events have high $\Delta\eta$ and high dijet mass
- Selection of forward dijet $\rightarrow \Delta \eta(j_1, j_2) > 2.4$ AND dijet mass > 500 GeV(#slide 20,23)

Deep Tagger Study: $H \rightarrow 4q$ jet Tagger

• Multi-class classifier for top, W, Z, Higgs and QCD jets, based on standard anti-kT R=0.8 (AK8) jets having

- Nominal version \rightarrow jet mass dependency
- $\bullet\,$ Mass decorrelated version $\rightarrow\,$ independent of jet mass
- It provides discriminator for heavy object (top/W/Z/H) jets vs QCD jets
 - $\bullet~$ Standard discriminants : W $\rightarrow~$ jets vs QCD jet and T $\rightarrow~$ jets vs QCD jets
 - Experimental discriminants: WH vs QCD jets (applied to the analysis)

Signal vs Background Study for T' Mass points

Event Selection Applied

- Lepton trigger applied
 - For Muon Channel: HLT_MU_50||HLT_OldMu100||HLT_TkMu100
 - For Electron Channel:HLT_Ele50_CaloIdVT_GsfTrkIdT_PFJet165||HLT_Ele115_CaloIdVT_GsfTrkIdT||HLT_Photon200
- Primary Vertex, PV > 0
- $\bullet~\mathsf{N}(\mathsf{lep}) \geq 1~\mathsf{AND}~\mathsf{N}(\mathsf{jet}) \geq 1$, here $\mathsf{lep} = \mathsf{electron}(\mathsf{muon})$
- ${\sf E_T}^{miss} > 50~{
 m GeV}$
- Fatjet selection (N(fatjet) \geq 1)
 - $P_T(fatjet) > 300 \text{ GeV}$
 - $|\eta(fatjet)| < 2.4$
 - SoftDrop mass = [100, 160] GeV
 - DeepBoosted Discriminator WHvsQCD > 0.20
- $S_T > 700$ GeV, Here $S_T = \sum P_T$ (E_T^{miss} , leading lepton, leading bjet and leading fatjet)
- N(forwjet) = 2 AND N(bjet) = 1
- Weight applied: $w_{Lumi} \times w_{Pileup} \times w_{L1PreFiring} \times w_{btag} \times w_{lepton}$

Kinematic Distributions

• Signal Events in high P_T range conclude boosted topology

Reconstructed Mass Distributions: fatjet & T'

- T' reconstructed with combination of four vector of (E_T^{miss} , lepton, bjet and fatjet)
- Signal Events in high P_T range conclude boosted topology

Arjun Chhetri (University of Delhi)

XXV DAE-BRNS HEP Symposium 2022

Data Validation in Background Enriched Region for LHC-Run2 Data

Control Region-Top Selection

- $\bullet\,$ Top-events(ttbar and single top) compromised $\sim 80\%$ of background events
- Next we design control region to predict these backgrounds
- Lepton trigger applied
- Primary Vertex, PV > 0
- $\bullet~\mathsf{N}(\mathsf{lep}) \geq 1~\mathsf{AND}~\mathsf{N}(\mathsf{jet}) \geq 1$, Here $\mathsf{lep} = \mathsf{electron}(\mathsf{muon})$
- ${\sf E_T}^{miss} > 50~{\rm GeV}$
- Fatjet selection (N(fatjet) \geq 1)
 - P_T(fatjet) > 300 GeV
 - $|\eta(fatjet)| < 2.4$
 - SoftDrop mass = [100, 220] GeV
- $S_T > 700$ GeV, Here $S_T = \sum P_T(E_T^{miss}$, leading lepton, leading bjet and leading fatjet)
- N(forwjet) = 2 AND N(bjet) ≥ 1
- Side-band region selected around Higgs mass for, top-enriched, with similar to SR's kinematics and keeping SR blinded
- Mass(fatjet) excluding window of [110,140]GeV
- Weight applied: $w_{Lumi} \times w_{Pileup} \times w_{L1PreFiring} \times w_{btag} \times w_{lepton}$

Kinematic Distributions: Lepton

• Good Data-MC agreement holds for both leptons

Kinematic Distributions: Leading bjet and fatjet

Arjun Chhetri (University of Delhi)

XXV DAE-BRNS HEP Symposium 2022

December 14, 2022 14 / 23

Deep-WH Spectra: fatjet

- Deep-WH spectra is corrected by deep-tagger SF
- Good data-mc agreement for fatjet

Reconstructed Mass Distributions: fatjet & T'

• Good Data-MC agreement especially in Mass(fatjet) distribution

Summary/Next Steps

- LHC-Run2 Data of Total Integrated Luminosity(\int L.dt=137 fb⁻¹) analysed
 - Forward dijet pair selected as per decay topology
 - $\bullet\,$ Higgs–4q tagger designed using Deep Boosted WH vs QCD discriminator
 - T' fully reconstructed based on signal region study
 - Specially designed Control Region(top-like events) explored
 - Data analysed keeping signal region blinded
 - Scale factors for major object applied \rightarrow (btag, lepton, Higgstag)
 - Data-MC validation shows good agreement for major variables
- Next Steps
 - Background estimation using control region-top
 - Inclusion of Systematic Uncertainities
 - Estimate limit and significance of analysis
 - Last, go for Pre-Approval and then Publication of analysis

Thank You & Back Up Slides

$\mathbf{E}_{\mathcal{T}}^{miss} \& \mathbf{S}_{\mathcal{T}}$ Distribution

• Signal Events in high P_T range conclude boosted topology

Kinematic Distributions: forward dijet

• Signal Events in high P_T range conclude boosted topology

Primary Vertex Distribution

• Good Data-MC agreement

Arjun Chhetri (University of Delhi)

$\mathbf{E}_{\mathcal{T}}^{miss}$ & $\mathbf{S}_{\mathcal{T}}$ Distribution

• Good Data-MC agreement

Kinematic Distributions: forward dijet

• Reasonable Data-MC agreement