Confronting dark fermion with a doubly charged Higgs in the Left Right symmetric model

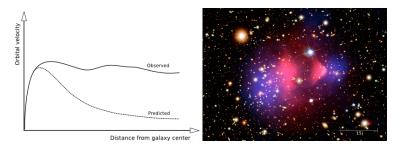
Shyamashish Dey

Harish Chandra Research Institute XXV DAE-BRNS HEP Symposium IISER Mohali

Dec, 2022

・ロト ・四ト ・ヨト ・ヨト

크


- Motivation for Dark Matter
- Model and Particle contents
- Mass estimates of Dark Sector particles
- Dark Matter relic density and detection bounds
- Collider signatures of double charged Higgs
- Conclusion

伺下 イヨト イヨト

= nar

Motivation for Dark Matter

- Rotational Curve of Galaxies
- Bullet Cluster's offset center of mass of baryonic matter

- Peculiar motion of clusters
- anisotropies of the Cosmic Microwave Background

Name Dark Matter in Left Right symmetric model

(∃) ∃

4 A D A D A D A

• We introduced a Z_2 symmetry with two vector like doublets $\psi_{1,2}$ in a standard MLRSM model, under which SM particles are even and Dark Sector Particles are odd , ensuring we have stable Dark Matter candidate.

Fermion Fields	$SU(3)_C$	$\otimes SU(2)_R$	⊗ <i>SU</i> (2) _L	$\otimes U(1)_{B-1}$	\mathcal{Z}_2
$Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L$	3	1	2	$\frac{1}{3}$	+
$Q_R = \begin{pmatrix} u \\ d \end{pmatrix}_R$	3	2	1	$\frac{1}{3}$	+
$L_L = \begin{pmatrix} \nu_\ell \\ \ell \end{pmatrix}_L$	1	1	2	-1	+
$L_R = \begin{pmatrix} u_\ell \\ \ell \end{pmatrix}_R$	1	2	1	-1	+
$\psi_{1}: \begin{pmatrix} \psi_{1}^{0} \\ \psi_{1}^{-} \end{pmatrix}_{L}, \ \begin{pmatrix} \psi_{1}^{0} \\ \psi_{1}^{-} \end{pmatrix}_{R}$	1	1	2	-1	-
$\psi_2: \begin{pmatrix} \psi_2^0 \\ \psi_2^- \end{pmatrix}_I, \begin{pmatrix} \psi_2^0 \\ \psi_2^- \end{pmatrix}_R$	1	2	1	-1	-

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Scalar Fields	<i>SU</i> (3) _C (⊗ <i>SU</i> (2) _R ⊗	SU(2) _L ⊗	$\supset U(1)_{B-}$	\mathcal{Z}_{2}
$\Phi=egin{pmatrix} \phi_1^0&\phi_2^+\ \phi_1^-&\phi_2^0 \end{pmatrix}$	1	2	2	0	+
$\Delta_L = egin{pmatrix} \Delta^+ & \Delta^{++} \ \Delta^0 & - \Delta^+ \ \sqrt{2} \end{pmatrix}_L$	1	1	3	2	+
$\Delta_R = egin{pmatrix} \Delta^+ & \Delta^{++} \ \Delta^0 & - \Delta^+ \ \sqrt{2} \end{pmatrix}_R$	1	3	1	2	+

Gauge group is $\mathcal{G} \equiv SU(3)_C \otimes SU(2)_R \otimes SU(2)_L \otimes U(1)_{B-L} \otimes \mathcal{Z}_2$. Hypercharge (B-L) of the field is obtained by using the relation : $Q = I_{3R} + I_{3L} + \frac{B-L}{2}$, where I_3 is the third component of isospin and Q is the electromagnetic charge.

(日) (日) (日)

I nar

- $SU(2)_R \otimes U(1)_{B-L} \xrightarrow{\langle \Delta_R \rangle} U(1)_Y.$
- $SU(2)_L \otimes U(1)_Y \xrightarrow{\langle \Phi \rangle} U(1)_Q$
- this Spontanious Symmetry Breaking is done by giving vev to the neutral components of scalars.

$$\langle \Phi \rangle = \begin{pmatrix} v_1 e^{i\alpha_1} & 0 \\ 0 & v_2 e^{i\alpha_2} \end{pmatrix}, \ \langle \Delta_L \rangle = \begin{pmatrix} 0 & 0 \\ v_L e^{i\beta_L} & 0 \end{pmatrix}, \ \langle \Delta_R \rangle = \begin{pmatrix} 0 & 0 \\ v_R e^{i\beta_R} & 0 \end{pmatrix}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Model and Particle contents

$$\begin{split} \mathcal{L}^{\mathrm{DS}} = &\overline{\psi_{1}} \Big[i\gamma^{\mu} \Big(\partial_{\mu} - ig_{\mathrm{L}} \frac{\sigma^{a}}{2} W_{L\mu}^{a} - ig_{\mathrm{BL}} \frac{Y_{\mathrm{BL}}}{2} B_{\mu} \Big) - M_{L} \Big] \psi_{1} \\ &+ \overline{\psi_{2}} \Big[i\gamma^{\mu} \Big(\partial_{\mu} - ig_{R} \frac{\sigma^{a}}{2} W_{R\mu}^{a} - ig_{\mathrm{BL}} \frac{Y_{\mathrm{BL}}}{2} B_{\mu} \Big) - M_{R} \Big] \psi_{2} \\ &- \Big\{ \Big(y_{1} \overline{\psi_{1}} \Phi \psi_{2} + y_{2} \overline{\psi_{1}} \tilde{\Phi} \psi_{2} \Big) + h.c \Big\} \\ &- y_{L} \Big(\overline{\psi_{1}} \Delta_{L}^{\dagger} i\sigma_{2} \psi_{1}^{c} + h.c \Big) - y_{R} \Big(\overline{\psi_{2}} \Delta_{R}^{\dagger} i\sigma_{2} \psi_{2}^{c} + h.c \Big). \\ &\psi_{(1,2)} = \psi_{(1,2)_{L}} + \psi_{(1,2)_{R}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Mass estimates of Dark Sector particles

$$\begin{split} \mathcal{L}^{\text{NDS}} \text{mass} &= \frac{1}{2} \overline{X^c} \begin{pmatrix} y_L v_L \sqrt{2} & M_L & 0 & \frac{(y_1 v_1 + y_2 v_2)}{\sqrt{2}} \\ M_L & y_L v_L \sqrt{2} & \frac{(y_1 v_1 + y_2 v_2)}{\sqrt{2}} & 0 \\ 0 & \frac{(y_1 v_1 + y_2 v_2)}{\sqrt{2}} & y_R v_R \sqrt{2} & M_R \\ \frac{(y_1 v_1 + y_2 v_2)}{\sqrt{2}} & 0 & M_R & y_R v_R \sqrt{2} \end{pmatrix} X + h.c. \end{split}$$

The eigen values of the above mass matrix \mathcal{M}_N for neutral dark sector particles are given by

$$m_{\pm}^{1} = \frac{(y_{L}v_{L} + y_{R}v_{R})\sqrt{2} - (M_{L} + M_{R}) \pm \left(\left(\frac{(y_{L}v_{L} - y_{R}v_{R})}{\sqrt{2}} - (M_{L} - M_{R})\right)^{2} + 4\alpha^{2}\right)^{1/2}}{2}$$
$$m_{\pm}^{2} = \frac{(y_{L}v_{L} + y_{R}v_{R})\sqrt{2} + (M_{L} + M_{R}) \pm \left(\left(\frac{(y_{L}v_{L} - y_{R}v_{R})}{\sqrt{2}} + (M_{L} - M_{R})\right)^{2} + 4\alpha^{2}\right)^{1/2}}{2}$$

Here M_1 , M_2 , M_3 and M_4 are the mass eigen values for the mass eigen states χ_1 , χ_2 , χ_3 and χ_4 respectivly. Here the lightest neutral state is assumed to be χ_1 ($M_1 < M_2 < M_3 < M_4$) and it becomes the stable DM candidate. $\alpha = \frac{(y_1v_1+y_2v_2)}{\sqrt{2}}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

$$\mathcal{L}_{\rm mass}^{\rm CDS} = \begin{pmatrix} \overline{\psi_1^-} & \overline{\psi_2^-} \end{pmatrix} \begin{pmatrix} M_L & \frac{\psi_1 y_2}{\sqrt{2}} \\ \frac{\psi_1 y_2}{\sqrt{2}} & M_R \end{pmatrix} \begin{pmatrix} \psi_1^- \\ \psi_2^- \end{pmatrix}$$

The mass eigen values of the charged dark sector particles are

$$M_{(1,2)}^{\pm} = \frac{1}{2} \left(M_L + M_R(\pm) \sqrt{(M_L - M_R)^2 + 2v_1^2 y_2^2} \right)$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ……

• Relic and Direct Search

 $\Omega_{DM} h^2 = 0.120 \pm 0.001$ at 90% CL.

The XENON 1T experiment puts a bound on the scattering cross-section of DM nucleon interaction.

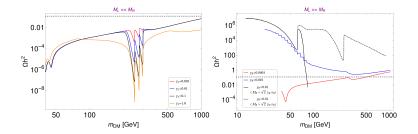
• Higgs invisible decay

If dark matter's mass is below of half the mass of Higgs ,then Higgs can decay to dark matter via invisible decay

LEP Constraints

LEP excludes charged fermions(Charged dark sector particles) below 100 GeV.

FCNC constraints

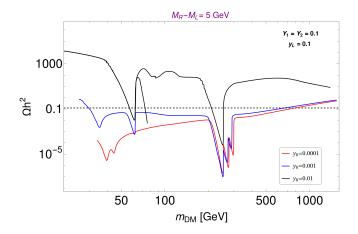

The flavour changing neutral current (FCNC) puts a strong lower bound on heavy neutral scalars $M_{H,A} > 15 TeV$. Using approximate expression of heavy neutral scalar,

$$\frac{1}{2}\alpha_3 \left(\frac{v_R}{\text{TeV}}\right)^2 \gtrsim \left(\frac{15}{\text{TeV}}\right)^2 \tag{1}$$

The neutral dark sector particle with lowest mass (χ_1) is the DM candidate which freezes out when $(n\sigma v \ll H)$.

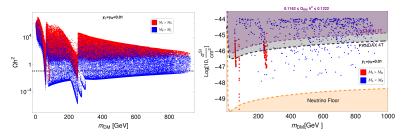
 $\begin{array}{l} (\chi_1\chi_1 \leftrightarrow SMSM) \text{,} \ (\chi_1\chi_i \leftrightarrow SMSM) \text{,} \ (\chi_1\chi_i^{\pm} \leftrightarrow SMSM) \text{,} \ (\chi_i\chi_j \leftrightarrow SMSM) \text{,} \ (\chi_i\chi_j \leftrightarrow SMSM) \text{,} \ (\chi_i^{\pm}\chi_j^{\pm} \leftrightarrow SMSM) \end{array}$ $\begin{array}{l} \frac{dn_{DM}}{dt} + 3Hn_{DM} = -\langle \sigma v \rangle_{eff} \left(n_{DM}^2 - n_{eq}^2\right) \end{array}$

(同) (E) (E) (E) のQ()



$$\begin{split} \chi_{1} &\simeq -\frac{i}{\sqrt{2}} \begin{pmatrix} \psi_{1} - \psi_{1}^{c} \end{pmatrix} \quad \text{of mass} \quad M_{1} = M_{L/R} - \sqrt{2} \ v_{L/R} \ y_{L/R} \ (\equiv m_{\text{DM}}) \\ \chi_{2} &\simeq \frac{1}{\sqrt{2}} \begin{pmatrix} \psi_{1} + \psi_{1}^{c} \end{pmatrix} \quad \text{of mass} \quad M_{2} = M_{L/R} + \sqrt{2} \ v_{L/R} \ y_{L/R} \\ \chi_{1}^{\pm} &\simeq \psi_{1}^{\pm} \quad \text{of mass} \quad M_{1}^{\pm} = M_{L/R}, \end{split}$$

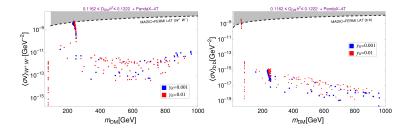
Name Dark Matter in Left Right symmetric model


イロン イ団 とくほと くほとう

÷.

- TR

< ≣⇒


We perform a numerical scan over the following region :

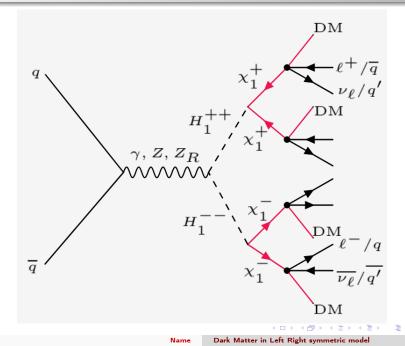
$$\begin{split} M_L : \{ 100 - 1000 \} \mbox{ GeV} & M_R : \{ 100 - 1000 \} \mbox{ GeV} \\ Y &\equiv Y_1 = Y_2 : \{ 0.01 - 0.20 \} & y \equiv y_L = y_R : \{ 0.001, \ 0.01 \} \end{split}$$

Name Dark Matter in Left Right symmetric model

() ⇒) ⇒] ⇒]

3.1

э

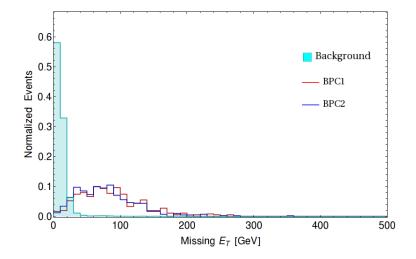

Benchmarks for collider studies

	BPC1	BPC2	BPC3
$\left(M_{H_R^{\pm\pm}}, M_{H_L^{\pm\pm}}, v_R\right)$	$(889.2, 300.3, 30 \times 10^3)$	$(1000, 280, 30 \times 10^3)$	$(800, 300, 30 \times 10^3)$
DM Inputs	$M_L = 150$ $M_R = 150$ $Y_1 = Y_2 = 4 \times 10^{-2}$	$M_L = 142$ $M_R = 142$ $Y_1 = Y_2 = 4 \times 10^{-2}$	$M_L = 120$ $M_R = 210$ $Y_1 = 0.036$ $Y_2 = 0.06$
Mass(GeV)	$y_R = 2.06 \times 10^{-3} \ y_L = 0.6$	$y_R = 2.08 \times 10^{-3} \ y_L = 2.0$	$y_R = 0.028 \ y_L = 0.6$
Dark Particles Mass(GeV)	$M_1 = 62.044, M_2 = 149.708,$ $M_3 = 150.291, M_4 = 237.955$ $M_1^{\pm} = 143.035, M_2^{\pm} = 156.964$	$M_1 = 61.118, M_2 = 147.735,$ $M_3 = 152.264, M_4 = 238.811$ $M_1^{\pm} = 143.035, M_2^{\pm} = 156.964$	$M_1 = 89.8, \ M_2 = 120.4,$ $M_3 = 120.6, \ M_4 = 328.9$ $M_1^{\pm} = 118.8, \ M_2^{\pm} = 211.1$
	$\Omega_{\rm DM}h^2 = 0.107$	$\Omega_{\rm DM} h^2 = 0.1150$	$\Omega_{\rm DM}h^2=0.0973$
Relic Density,	$\sigma_n^{\rm SI}=4.92\times 10^{-48}~{\rm cm}^2$	$\sigma_n^{\rm SI} = 1.46 \times 10^{-48}~{\rm cm}^2$	$\sigma_n^{\rm SI} = 6.687 \times 10^{-47} \ {\rm cm}^2$
Direct Detection, Indirect Detection	$\begin{split} \langle \sigma v \rangle_{\mu\mu} &= 1.61 \times 10^{-13} \text{ GeV}^{-2} \\ \langle \sigma v \rangle_{\tau\tau} &= 4.54 \times 10^{-11} \text{ GeV}^{-2} \\ \langle \sigma v \rangle_{\text{bb}} &= 7.50 \times 10^{-10} \text{ GeV}^{-2} \end{split}$	$\begin{split} &\langle \sigma v \rangle_{\rm WW} = 1.19 \times 10^{-12} ~{\rm GeV^{-2}} \\ &\langle \sigma v \rangle_{\mu\mu} = 4.38 \times 10^{-21} ~{\rm GeV^{-2}} \\ &\langle \sigma v \rangle_{\tau\tau} = 1.24 \times 10^{-18} ~{\rm GeV^{-2}} \\ &\langle \sigma v \rangle_{\rm bb} = 1.98 \times 10^{-17} ~{\rm GeV^{-2}} \end{split}$	$\begin{split} \langle \sigma v \rangle_{\mu\mu} &= 4.46 \times 10^{-18} \ \mathrm{GeV}^{-2} \\ \langle \sigma v \rangle_{\tau\tau} &= 1.26 \times 10^{-15} \ \mathrm{GeV}^{-2} \\ \langle \sigma v \rangle_{\mathrm{bb}} &= 1.07 \times 10^{-14} \ \mathrm{GeV}^{-2} \end{split}$
Neutrino sector $(m_{\nu} = 0.1 \text{ eV})$	$\begin{split} M_{Dii} &= 5 \times 10^{-5} \; {\rm GeV} \; M_{Di \neq j} = 0 \\ Y_{\Delta Rii} &= 5.892 \times 10^{-4} \; Y_{\Delta Ri \neq j} = 0 \\ M_N &= 25 \; {\rm GeV}; \; V_{\ell N} \simeq 10^{-6} \end{split}$	$\begin{split} M_{Dii} &= 5 \times 10^{-5} \ {\rm GeV} \ M_{Di \neq j} = 0 \\ Y_{\Delta Rii} &= 5.892 \times 10^{-4} \ Y_{\Delta Ri \neq j} = 0 \\ M_N &= 25 \ {\rm GeV}; \ V_{\ell N} \simeq 10^{-6} \end{split}$	$\begin{split} M_{Dii} &= 1 \times 10^{-4} \text{ GeV } M_{Di \neq j} = 0 \\ Y_{\Delta Rii} &= 2.357 \times 10^{-3} Y_{\Delta Ri \neq j} = 0 \\ M_N &= 100 \text{ GeV}; \ \ell_{\ell N} \simeq 10^{-6} \end{split}$
Doubly charged Scalar	$\begin{split} & \Gamma(H_L^{\pm\pm}) = 1.228 \times 10^{-1} \ \mathrm{GeV} \\ & \mathrm{Br}(H_L^{\pm\pm} \to \chi_1^{\pm} \ \chi_1^{\pm}) \simeq 98.67\% \\ & \mathrm{Br}(H_L^{\pm\pm} \to \chi_1^{\pm} \chi_2^{\pm}) \simeq 0.659\% \\ & \mathrm{Br}(H_L^{\pm\pm} \to WW) \simeq 0.665\% \end{split}$	$\begin{split} & \Gamma(H_L^{\pm\pm}) = 7.571 \times 10^{-2} ~\mathrm{GeV} \\ & \mathrm{Br}(H_L^{\pm\pm} \to \chi_1^\pm ~\chi_1^\pm) \simeq 99.08\% \\ & \mathrm{Br}(H_L^{\pm\pm} \to WW) \simeq 0.9195\% \end{split}$	$\begin{split} \Gamma(H_L^{\pm\pm}) &= 3.835~{\rm GeV} \\ {\rm Br}(H_L^{\pm\pm} \to \chi_1^\pm ~\chi_1^\pm) {\simeq}~99.9\% \end{split}$
Dark charged Fermion	$\begin{split} \Gamma(\chi_1^{\pm}) &= 4.005 \times 10^{-6} ~{\rm GeV} \\ {\rm Br}(\chi_1^{\pm} \to \chi_1 W^{\pm}) {\simeq} ~100\% \end{split}$	$\begin{split} \Gamma(\chi_1^{\pm}) &= 1.462 \times 10^{-5} \ {\rm GeV} \\ {\rm Br}(\chi_1^{\pm} \to \chi_1 W^{\pm}) {\simeq} \ 100\% \end{split}$	$\begin{split} & \Gamma(\chi_1^{\pm}) = 9.39 \times 10^{-7} \ {\rm GeV} \\ & {\rm Br}(\chi_1^+ \to \chi_1 u_t \bar{d}_j') {\simeq} 66.6\% \\ & {\rm Br}(\chi_1^+ \to \chi_1 \ell^+ \nu_\ell (\ell=e,\mu)) {\simeq} 22.2\% \\ & {\rm Br}(\chi_1^+ \to \chi_1 \ell^+ \nu_\ell (\ell=\tau)) {\simeq} 11.1\% \end{split}$
Cross-section $\sqrt{s} = 14$ TeV (LHC)	$\sigma(pp \rightarrow H_L^{++} H_L^{}) = 13.953~{\rm fb}$	$\sigma(pp \rightarrow H_L^{++} H_L^{}) = 16.58~{\rm fb}$	$\sigma(pp \rightarrow H_L^{++}H_L^{}) = 13.9 \text{ fb}$ $\sigma(e^+e^- \rightarrow H_L^{++}H_L^{}) = 58.22 \text{ fb}$ (ILC: $\sqrt{s} = 1 \text{ TeV}$)

Name

Dark Matter in Left Right symmetric model

Feynman Diagram

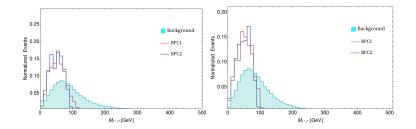


Signal and backgrounds :


- Signal will appear when all four *W* bosons produced in the cascade decay of the pair of double charged Higgs, decays leptonically.
- The dominant background are SM sub-processes producing $t\bar{t}Z$, ZZ and VVV. Additional sources $t\bar{t}$ and WZ.

Selection cuts :

- $p_{T_l} > 10$ GeV and $|\eta_l| < 2.5$.
- We demand a hadronically quite environment by putting veto on events with light jets and b jets with $p_{T_{b/j}} > 40$ GeV and $|\eta_{b/j}| < 2.5$. This helps in suppressing a significant part of the background coming from $t \bar{t}(Z)$ production.



문어 문

< 47 ►

< ≣⇒

< 17 >

< ≣⇒

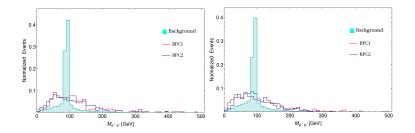


Image: A mathematical states and a mathem

< ≣⇒

$4\ell + E_T$ signature results at 3000 fb^{-1}

Cuts (GeV)	$E_T < 30$	$82 < M_{e^+e^-} < 100$	$82 < M_{\mu^+\mu^-} < 100$	$p_T[l_2] < 30$	$M_{l_i^+l_j^+}>110$	$M_{l_{i}^{-}l_{j}^{-}}>110$
BPC1	15.4	13.6	10.4	9.5	9.4	9.3
BPC2	18.2	15.9	11.4	10.2	9.9	9.9
Background	687.7	381.0	53.0	20.0	8.5	1.0

Benchmark	Signal	Background	Significance
BPC1	9.4	1.0	5.50
BPC2	9.9	1.0	5.75

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Cuts (GeV)	$E_T < 30$	$75 < M_{e^+e^-} < 100$	$80 < M_{\mu^+\mu^-} < 100$	$M_{l^\pm j_1 j_2} > 130$	SetA: $M_{l_i^+ l_j^+} > 100$	SetA: $65 < M_{j_1 j_2} < 90$
					SetB: $M_{l_i^- l_j^-} > 90$	Set B: $60 < M_{j_1 j_2} < 90$
BPC1	28.5	26.3	23.0	7.5	7.0	5.5
BPC2	31.9	29.6	25.7	9.2	9.1	6.5
Background	40395	26293	3974	56.7	24.1	1.7

Benchmark	Signal	Background	Significance
BPC1	5.5	1.7	3.13
BPC2	6.5	1.7	3.59

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

- This model contains Dark matter candidate in a Left Right symmetric construction.
- A wide range of mass (70 900 Gev) is available for DM.
- In this model we have different mechanisms for producing dark matter with different gauge properties $(SU(2)_{L/R})$ which provides different parameter regions satisfying direct and indirect detection bounds.
- We studied collider signatures of double charged Higgs, whose lower bound on mass can be reduced below 400 GeV under the construction of this model at luminosity of 3000 fb^{-1} at LHC(14 TeV).
- We also studied a benchmark point with the $3\ell + 2j + E_T$ signal where double charged Higgs decays through off-shell *W* Boson to dark fermions which has very low sensitivity at LHC but can have higher significance (4.8 σ) at ILC(1 TeV).

< ロ > < 同 > < 回 > < 回 > < □ > <