Probing Anomalous Couplings in Single Higgs Production at *ep* **Collider**

Pramod Sharma and Ambresh Shivaji, JHEP 10 (2022) 108

Pramod Sharma IISER Mohali, India

XXV DAE-BRNS High Energy Physics Symposium 2022 Dec 12-16, 2022

- A particle of 125 GeV discovered by CMS and ATLAS experiments in 2012
- So far measurements of Higgs boson properties are compatible with SM within current uncertainties
- The KEY to probe new physics is to verify EWSB (Higgs mechanism)
- Uncertainty $\rightarrow \approx 10\%$ in Higgs to gauge boson couplings

Ref. [1] Nature 607, 60-68 (2022)

Anomalous $HVV(V = W^{\pm}, Z)$ coupling

$$g\left(m_W \kappa_W W^+_{\mu} W^{-\mu} + \frac{\kappa_Z}{2 \cos \theta_W} m_Z Z_{\mu} Z^{\mu}\right) H$$
$$-\frac{g}{m_W} \left[\frac{\lambda_{1W}}{2} W^{+\mu\nu} W^-_{\mu\nu} + \frac{\lambda_{1Z}}{4} Z^{\mu\nu} Z_{\mu\nu} + \lambda_{2W} (W^{+\nu} \partial^{\mu} W^-_{\mu\nu} + h \cdot c.) + \lambda_{2Z} Z^{\nu} \partial^{\mu} Z_{\mu\nu} + \frac{\tilde{\lambda}_W}{2} W^{+\mu\nu} \widetilde{W}^-_{\mu\nu} + \frac{\tilde{\lambda}_Z}{4} Z^{\mu\nu} \widetilde{Z}_{\mu\nu}\right] H$$

$g \rightarrow SU(2)$ coupling parameter

$$\tilde{V}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} V_{\alpha\beta}$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu}$

Anomalous $HVV(V = W^{\pm}, Z)$ coupling

$$g\left(m_W \kappa_W W^+_\mu W^{-\mu} + \frac{\kappa_Z}{2\cos\theta_W} m_Z Z_\mu Z^\mu\right) H$$
$$-\frac{g}{m_W} \left[\frac{\lambda_{1W}}{2} W^{+\mu\nu} W^-_{\mu\nu} + \frac{\lambda_{1Z}}{4} Z^{\mu\nu} Z_{\mu\nu} + \lambda_{2W} (W^{+\nu} \partial^\mu W^-_{\mu\nu} + h.c.) + \lambda_{2Z} Z^\nu \partial^\mu Z_{\mu\nu}\right]$$

$$+\frac{\tilde{\lambda}_W}{2}W^{+\mu\nu}\widetilde{W}^-_{\mu\nu} + \frac{\tilde{\lambda}_Z}{4}Z^{\mu\nu}\widetilde{Z}_{\mu\nu}\bigg]H$$

Anomalous $HVV(V = W^{\pm}, Z)$ coupling

 $\left|g\left(m_W \kappa_W W^+_{\mu} W^{-\mu} + \frac{\kappa_Z}{2\cos\theta_W} m_Z Z_{\mu} Z^{\mu}\right)H\right| \qquad \text{SM like}$ $-\frac{g}{m_W} \left| \frac{\lambda_{1W}}{2} W^{+\mu\nu} W^{-}_{\mu\nu} + \frac{\lambda_{1Z}}{4} Z^{\mu\nu} Z_{\mu\nu} \right|^2$ $+\lambda_{2W}(W^{+\nu}\partial^{\mu}W^{-}_{\mu\nu}+h.c.)+\lambda_{2Z}Z^{\nu}\partial^{\mu}Z_{\mu\nu}$ $+\frac{\tilde{\lambda}_W}{-}W^{+\mu\nu}\widetilde{W}^-_{\mu\nu} + \frac{\lambda_Z}{\Lambda}Z^{\mu\nu}\widetilde{Z}_{\mu\nu} H$

Anomalous $HVV(V = W^{\pm}, Z)$ coupling

 $g\left(m_W \kappa_W W^+_\mu W^{-\mu} + \frac{\kappa_Z}{2\cos\theta_W} m_Z Z^\mu_\mu Z^\mu\right) H$ $-\frac{g}{m_W} \left[\frac{\lambda_{1W}}{2} W^{+\mu\nu} W^{-}_{\mu\nu} + \frac{\lambda_{1Z}}{4} Z^{\mu\nu} Z_{\mu\nu} \right]$ $+\lambda_{2W}(W^{+\nu}\partial^{\mu}W^{-}_{\mu\nu}+h.c.)+\lambda_{2Z}Z^{\nu}\partial^{\mu}Z_{\mu\nu}$ $+\frac{\tilde{\lambda}_W}{2}W^{+\mu\nu}\widetilde{W}^-_{\mu\nu}+\frac{\tilde{\lambda}_Z}{4}Z^{\mu\nu}\widetilde{Z}_{\mu\nu}\bigg]H$

Vertex form

 $\Gamma^{\mu\nu}_{HVV}(p_1,p_2)$

 $g_V m_V \kappa_V g^{\mu\nu}$

$$+\frac{g}{m_W} \left[\lambda_{1V} (p_1^{\nu} p_2^{\mu} - g^{\mu\nu} p_1 . p_2) \right]$$

+ $\lambda_{2V} \left(p_1^{\mu} p_1^{\nu} + p_2^{\mu} p_2^{\nu} - g^{\mu\nu} p_1 \cdot p_1 - g^{\mu\nu} p_2 \cdot p_2 \right)$

+ $\widetilde{\lambda}_V \epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta}$

Collider	Center of mass energy (TeV)	Process	Cross section (pb)
рр	14	$pp \rightarrow hjj$	3.7
ILC	1	$e^+e^- \rightarrow e^+e^-h$ $e^+e^- \rightarrow \nu_e \bar{\nu}_e h$	0.007 0.21
CLIC	3	$e^+e^- \rightarrow e^+e^-h$ $e^+e^- \rightarrow \nu_e \bar{\nu}_e h$	6 × 10 ⁻⁴ 0.5
LHeC	1.3	$e^-p \rightarrow e^-hj$ $e^-p \rightarrow \nu_e hj$	0.016 0.088

For this study, $E_e = 60 \text{ GeV}$, $E_p = 7 \text{ TeV}$

- LHeC: e⁻ energy 60 to 120 GeV with 7 TeV proton energy
- Sufficiently large cross section as compared to e^+e^- collider
- Clean environment with suppressed background as compared to *pp* collider

Results and discussion

Ref. [2]: Phys. Rev. Lett. 109 (2012) 261801, [1203.6285]

Observables: $|\Delta\phi|$ is azimuthal correlation of two particles 1 and 2

 $|\Delta \phi| = cos^{-1}(\hat{p}_{T1}, \hat{p}_{T2})$

Motivation: $|\Delta \phi|$ distribution is a good observable to distinguish CP-even and CP-odd couplings of CC process considered in ref. [2]

Results

- $|\Delta\phi|$ is sensitive to individual effect of new couplings

BSM effects in $|\Delta\phi|$ distribution for CC (left) and NC (right) $(\lambda_{1V}, \lambda_{2V}, \widetilde{\lambda_V})$

• Deviation in distribution with respect to SM is largest for λ_{2V} and smallest for λ_V

Signal for CC (NC) $e^-p \rightarrow \nu_e(e^-)hj, h \rightarrow b\bar{b}$ j = g, u, d, s, c

Signal for CC (NC) $e^-p \rightarrow \nu_e(e^-)hj, h \rightarrow bb$ j = g, u, d, s, c

Background for CC (NC)

• Irreducible background : $e^-p \rightarrow \nu_{\rho}(e^-)bbj$

Background for CC (NC)

• Irreducible background : $e^-p \rightarrow \nu_e(e^-)bbj$

Signal for CC (NC) $e^-p \rightarrow \nu_e(e^-)hj, h \rightarrow b\bar{b}$ j = g, u, d, s, c

• Reducible background: $\begin{cases} e^-p \to \nu_e(e^-)jjj \\ e^-p \to \nu_e(e^-)bbjj \\ \\ \text{Photo production from } e^-p \to e^-b\bar{b}j \end{cases}$ $\gamma^* p \rightarrow b \bar{b} j$ for CC process

Signal for CC (NC) $e^-p \rightarrow \nu_e(e^-)hj, h \rightarrow b\bar{b}$ j = g, u, d, s, c

Background for CC (NC)

- Irreducible background : e^-p -
- Reducible background: e^-p

Reduced by \mathbb{Z}_T for a very collinear e^- along the beam pipe

Negligible for miss-tagging

$$p \rightarrow \nu_e(e^-)b\bar{b}j$$

 $e^-p \rightarrow \nu_e(e^-)jjj$
 $e^-p \rightarrow \nu_e(e^-)bbjj$
Photo production from $e^-p \rightarrow e^-b\bar{b}j$

 $\gamma^* p \rightarrow b \bar{b} j$ for CC process

j = g, u, d, s, cSignal for CC (NC) $e^-p \rightarrow \nu_{\rho}(e^-)hj, h \rightarrow b\bar{b}$

Background for CC (NC)

• Irreducible background : $e^-p \rightarrow \nu_e(e^-)b\bar{b}j$

Reduced by E_T for a very collinear e⁻ along the beam pipe

Negligible for miss-tagging rates light jet $\rightarrow 0.01$

• Reducible background: $e^-p \rightarrow \nu_e(e^-)jjj$

Photo production from $e^-p \rightarrow e^-b\bar{b}j$

 $\gamma^* p \rightarrow bbj$ for CC process

Signal for CC (NC) $e^-p \rightarrow \nu_{\rho}(e^-)hj, h \rightarrow b\bar{b}$ j = g, u, d, s, c

Background for CC (NC)

• Irreducible background : $e^-p \rightarrow \nu_e(e^-)b\bar{b}j$

Energy smearing of partons by $\frac{\sigma_E}{E} = a/\sqrt{E} \oplus b$ a = 0.6, b = 0.04 for jets, a = 0.12, b = 0.02 for electrons [3]

Ref [3]: LHeC, FCC-he Study Group collaboration, J. Phys. G 48 (2021) 110501,[2007.14491].

Negligible for miss-tagging rates $c \text{ jet} \rightarrow 0.1$ light jet $\rightarrow 0.01$ • Reducible background: $e^-p \rightarrow \nu_e(e^-)jjj$

Results

Signal v/s background

Cuts or **CC**

$p_T(j) > 30 \ GeV, p_T(b) > 30 \ GeV, E_T > 25GeV$ $|M_{b\bar{b}} - m_H| < 15 \ GeV$

 $1 < \eta_j < 5.0, -1 < \eta_b < 4.0, M_{Hj} > 250 GeV$

Process	Events at generation level	Events after cuts
Signal	3011	819
$ u_e b ar b j$	18883	30
$ u_e b \bar{b} j j$	10985	38
S/B	0.1	12.0

Cuts or **NC**

$$p_T(e) > 20 \ GeV, p_T(j) > 30 \ GeV, p_T(b) > 30 \ G$$

 $|M_{b\bar{b}} - m_H| < 15 \ GeV$

 $|\eta_e| < 2.5, 2 < \eta_j < 5.0, 0.5 < \eta_b < 4.0, M_{Hj} > 300 GeV$

Process	Events at generation level	Events after cuts
Signal	534	76
e ⁻ b̄bj	2.75×10^{6}	161
e ⁻ b̄bjj	6.3×10^{5}	24
S/B	0.02×10^{-2}	0.41

- λ_{2W} is constrained most while $\widetilde{\lambda}_W$ is constrained least
- Very small effect of 2 bin analysis on κ_W and λ_W

Constraints on *HWW* parameters at $L = 100 fb^{-1}$

For E_e=60 GeV, E_p=7 TeV, L=100 fb⁻¹, $\Delta \chi^2$ =4.0 1 bin 3.5 2 bin 3 2.5 χ^2 2 1.5 1 0.5 0 -0.28 -0.21 -0.14 -0.07 0 λ_{1W}

at 95% C.L.

	Our limits at $L = 100 fb^{-1}$			
$\kappa_W \rightarrow$	[0.94,1.05]	Run II data [a 35.9 <i>fb</i> ⁻¹ , 13 T [0.76,1.34]	i] ēV HL LHC [e] 3.4%	
$\widetilde{\lambda}_W \to$	[-0.16, 0.16]	Run II LHC [b] [-0.42,0.3]	FCC eh [d] 1 <i>ab⁻¹</i> , 3.5 TeV [-1.2, 1.2]	LHeC [c $0.5 \ ab^{-1}, E_e = 1$ $E_p = 6.5$ c [-0.2, 0.3]
$\lambda_{1W} \rightarrow$	[-0.05, 0.05]		FCC eh [d] [-0.56, 0.54]	LHeC [c] [-0.06, 0.1
$\lambda_{2W} \rightarrow$	[-0.013, 0.015]	FCC eh [d] [-0.05, 0.05]		
[a] Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [b] Phys. Lett. B 805 (2020) 135426 [arXiv:2002.05315] [c] arXiv:1203.6285 [d] arXiv:1509.04016 [e] arXiv:1902.00134				

Constraints on *HWW* parameters at $L = 100 fb^{-1}$

Results

- *HZZ* parameters less stringent as compared to *HWW* parameters
- All parameters lie within range [-0.45, 0.45]

Constraints on *HZZ* parameters at $L = 100 fb^{-1}$

at 95% C.L.

	Our limits at $L = 100 fb^{-1}$		
$\kappa_Z \rightarrow$	[0.72 1.22]	Run II data [a] [0.75, 1.21]	HL LHC [e] 3.0%
$\lambda_{1Z} \rightarrow$	[-0.35, 0.25]		HL LHC [g] [-0.01, 0.01]
$\lambda_{2Z} \rightarrow$	[-0.06,0.13] ∪ [0.17, 0.34]		HL LHC [g] [-0.007, 0.007]
$\widetilde{\lambda}_Z \rightarrow$	[-0.45, 0.45]	Run II LHC [b] [-0.21,0.15]	HL LHC [g] [-0.08, 0.08]

[g] JHEP 01 (2018) 096 [arXiv:1703.06667]

Constraints on *HWW* parameters at $L = 100 fb^{-1}$

$$\Delta N \approx \sqrt{\sigma L} \quad (\text{for } \delta_{sys} = 0) \implies \chi^2 \propto L$$

at 95% C.L.

 $\kappa_W, \ \lambda_{1W}, \ \lambda_{2W}, \ \tilde{\lambda}_W \to 67 \ \%, 40 \ \%, 78 \ \%, 42 \ \%$

 $\kappa_Z, \ \lambda_{1Z}, \ \lambda_{2Z}, \ \tilde{\lambda}_Z \to 91 \ \%, 74 \ \%, 73 \ \%, 55 \ \%$

BSM parameters

- Parameter space increases as going from one parameter to two parameter analysis
- $(\lambda_{1W}, \lambda_{2W})$ region is strongly correlated
- $(\lambda_{2W}, \lambda_W)$ region has least effect of 2 bin analysis

two parameter analysis for *HWW* coupling

Correlation of two BSM parameters

- Parameter space increases as going from one parameter to two parameter analysis
- $(\lambda_{1W}, \lambda_{2W})$ region is strongly correlated
- $(\lambda_{2W}, \widetilde{\lambda}_W)$ region has least effect of 2 bin analysis

two parameter analysis for *HWW* coupling

- 2 bin analysis is not efficient to improve constraints
- Like *HWW* case, $(\lambda_{1Z}, \lambda_{2Z})$ region is also strongly correlated
- $(\lambda_{2Z}, \lambda_{Z})$ region has least effect of 2 bin analysis

two parameter analysis for *HZZ* coupling

- 2 bin analysis is not efficient to improve constraints
- Like HWW case, $(\lambda_{1Z}, \lambda_{2Z})$ region is also strongly correlated
- $(\lambda_{2Z}, \widetilde{\lambda_Z})$ region has least effect of 2 bin analysis

two parameter analysis for HZZ coupling

Conclusion

- $|\Delta \phi|$ distribution is sensitive to $HVV(V = W^{\pm}, Z)$ coupling.
- Using $|\Delta \phi|$ distribution, constraints are obtained keeping one parameter and two parameters non zero at a time.
- Constraints on BSM parameters are improved as going from 1 bin to 2 bin.
- Change in constraints as a function of luminosity is discussed.
- Constraints from two parameter analysis are loose as compared to one parameter analysis.

For BSM parameter c_{i} , γ^2 function is

$$\chi^{2}(c_{i}) = \sum_{j=1}^{n} \left(\frac{N_{j}^{\text{BSM}}(c_{i}) - N_{j}^{\text{SM}}}{\Delta N_{j}} \right)^{2}$$

 N_i^{SM} and $N_i^{BSM} \rightarrow SM$ and BSM events in j^{th} bin

uncertainty (Statistical + systematic) **5**% $\sqrt{N_j^{SM+Bkg}} = \sqrt{\sigma_j^{SM+Bkg} L}$

$$\Delta N_j = \sqrt{N_j^{\text{SM+Bkg}} \left(1 + \delta_{sys}^2 N_j^{\text{SM+Bkg}}\right)}$$

- $e^-p \rightarrow \nu_e b\bar{b}jj$ has 2 events after cuts
- $e^-p \rightarrow e^-jjj$ has 15 events and S/B changes 0.41 to 0.38

• PDF: NN23LO1 Uncertainty: 2.5%

the transverse energy of the final state particles Uncertainty: 5%

Renormalisation factorisation scale choice: -1 in MadGraph which is related to

• Constraints are improved by increasing energy

Constraints on HZZ parameters with respect to energy

• For -80% e-beam polarization S/B =11.0 (CC) and 0.3 (NC) No significant improvement in NC but constraints improved by 7–10% in CC case.

Constraints on HWW parameters for -80% e-beam polarisation