Neutrino masses and mixing angles in the context of bilinear R-parity violating supersymmetry

Arpita Mondal

Department of Physics, Indian Institute of Technology Patna, 801106, India

Work done in collaboration with A. Choudhury, S. Mitra and S. Mondal

XXV DAE-BRNS HEP Symposium 13 December, 2022

Outline

Model definition

- Motivation of this model
- Neutrino mass generation
- Observables and constraints
- Parameters
- Analysis details

Results and discussion

Existence of neutrino mass

- Neutrino oscillation → one of the most robust indications towards the existence of physics BSM
- Neutrino oscillation experiments
 Super-Kamiokande, KamLAND, RENO
- Accelerator experiments like T2K, K2K, MINOS etc.

Neutrino oscillation

- Neutrino oscillation \rightarrow tiny mass of neutrino and mixing
- Within Standard Model(SM) framework neutrino is massless \rightarrow no right handed neutrino
- No neutrino mass from RPC MSSM \rightarrow leads to RPV MSSM

R-parity violating MSSM

R-Parity violating superpotential

Motivation of considering only bilinear term

- We can generate neutrino mass by considering λ and λ' couplings
- They can generate neutrino mass at loop level only not at tree level
- Also their contribution to neutrino mass are Yukawa suppressed compared to contribution from bilinear term
- That's why we consider only bilinear term for our analysis

Model definition

Bilinear R-Parity violating Superpotential

 $W_{B_p} = \varepsilon_i L_i H_u$

• $\varepsilon_i \rightarrow$ Bilinear R-parity violating coupling parameter

- L_i is lepton multiplet
- H_u is Higgs supermultiplet

Lagrangian and corresponding soft term

$$\mathcal{L}_{\not \! R_p} = [arepsilon_i (ilde{H}^0_u
u_{iL} - ilde{H}^+_u l_{iL})] + h.c$$

Corresponding soft terms

$$\mathcal{L}_{soft} = B_i \tilde{L}_i H_u + h.c$$

 B_i is soft BRPV coupling

Tree level contribution

Tree level contribution to neutrino mass

- Coupling between neutrino and up-type Higgsino
- **7** \times 7 neutralino and neutrino mass matrix
- From the see-saw mechanism \rightarrow From high mass of neutralino neutrinos get some tiny mass

Only one neutrino becomes massive at tree level

Loop Contributions

Loop diagrams

a)*BB* loop generated neutrino mass

b)arepsilon B loop generated neutrino mass

- Sneutrino mix with different Higgs → produce splitting of sneutrino masses
- \blacksquare *BB* loop is the dominant one
- *m*₁ and *m*₂ become massive at loop level

$$[m_{\nu}]_{ij}^{(\varepsilon\varepsilon)} \propto \cos^2\beta \propto \frac{1}{\tan^2\beta}$$

- $[m_{\nu}]^{(BB)}_{ij} \propto \frac{1}{\cos^2\beta} \propto \tan^2\beta$
- $\ \ \, [m_{\nu}]_{ij}^{(\varepsilon B)} \propto \frac{1}{\cos\beta} \propto \tan\beta$

Phys.Rev.D 69 (2004) 093002

Observables

- Two mass square splitting values (Δm^2_{21} and Δm^2_{31})
- Three mixing angles ($\theta_{12}, \theta_{13}, \theta_{23}$)

Neutrino Observables

Observable	best fit value $\pm 1\sigma$
Δm^2_{21} (10 $^{-5}$ eV 2)	$7.50^{+0.22}_{-0.20}$
$ \Delta m^2_{31} $ (10 $^{-3}$ eV 2)(NH)	$2.55^{+0.02}_{-0.03}$
$ \Delta m^2_{31} $ (10 $^{-3}$ eV 2)(IH)	$2.45^{+0.02}_{-0.03}$
$\theta_{12}/^{\circ}$	$\textbf{34.3}\pm\textbf{1.0}$
$ heta_{13}/^{\circ}$ (NH)	$8.53^{+0.13}_{-0.12}$
$ heta_{13}/^{\circ}$ (IH)	$8.58\substack{+0.12\\-0.14}$
$ heta_{23}/^{\circ}$ (NH)	49.26 ± 0.79
$ heta_{23}/^{\circ}$ (IH)	$49.46^{+0.60}_{-0.97}$

Constraints

Constraints from Higgs

Higgs Mass: From experiment mass close to 125 GeV. Considered ± 3 GeV as theoretical uncertainty.

Phys. Rev. Lett. 114 191803 (2015)

• Higgs coupling strength data at $\sqrt{s} = 13$ TeV collected with CMS experiment \rightarrow Higgs coupling to Z, W, b, t, μ , τ , and γ particle.

CMS-PAS-HIG-19-005, 2020

Constraints from flavor physics

rare b-hadron decays as $\mathcal{B}(B o X_s + \gamma)$ and $\mathcal{B}(B^0_s o \mu^+ + \mu^-)$

Eur. Phys. J. C 81 226 (2021) and Phys. Rev. Lett. 128 041801 (2022)

Total 15 observables

Parameters

- $\:$ Using these observables and constraints \rightarrow try to constrain the parameter space of BRPV
- Also considered the recent collider constraints also
- Considered minimal set of parameters

List of fixed parameters	
M_1 = 300 GeV	$M_{\tilde{\alpha}} = 3 \text{ TeV}$
$M_2 = 1.1 \text{TeV}$	$M_{\tilde{\tau}} = 2 \text{ TeV}$
M_3 = 3 TeV	$A_t = -3.5 \text{ TeV}$
M_A = 3 TeV	

- Now we have 2 MSSM parameters (μ and aneta)
- **3 BRPV coupling parameters (** ε_1 , ε_2 , ε_3 **)**
- **3** soft coupling parameters (B_1 , B_2 , B_3)
- **3** vev parameters (v_1 , v_2 , v_3)
- So we have total 11 free parameters

Range of input parameters for scanning

From literature study we came up with some exhaustive range of each parameter such as

 μ : 1 to 3 TeV

 $\tan\beta$: 1 to 60

 $arepsilon_i (i=1,2,3)$: -1.0 to 1.0 GeV

 $B_i (i = 1, 2, 3)$: 0.1 GeV to 10 TeV

 $v_i(i=1,2,3)$: 10^{-8} to 0.1 GeV

Analysis details

- Generated model by using SARAH-4.14.5
- Output masses and mixing matrix generated by SPheno-4.0.4
- For scanning we use Markov Chain Monte Carlo(MCMC) based liklihood analysis
- Publicly available code which is a Python implementation of the ensemble sampler

Publications of the Astronomical Society of the Pacific, 125 306 (2013)

- We use a flat prior on all the parameters
- We use 500 walkers and 400 steps for each walker

Analysis details

Ne find the maximum liklihood function $L \propto \exp(-\mathcal{L})$

• Log liklihood
$$\mathcal{L} = \frac{\chi^2}{2} = \frac{1}{2} \sum_{i=1}^{n_{\rm obs}} \left[\frac{\Gamma_i^{\rm obs} - \Gamma_i^{\rm th}}{\sigma_i} \right]^2$$

- $\Gamma_i^{\rm obs}$ represents the set of $n_{\rm obs}$ observed data points
- The corresponding errors σ_i for each data
- $\Gamma_i^{\rm th}$ is the calculated value of each observable using our theoretical model
- Maximum liklihood means we find the minimum χ^2 here
- Degrees of freedom(D.O.F) = 15 independent observables -11 free parameters = 4

Parameters at best-fit point	
$v_1 = 3.37 \times 10^{-4} \text{ GeV}$ $v_2 = 4.00 \times 10^{-4} \text{ GeV}$ $v_3 = 9.66 \times 10^{-4} \text{ GeV}$ $\varepsilon_1 = -4.55 \times 10^{-3} \text{ GeV}$ $\varepsilon_2 = -8.86 \times 10^{-3} \text{ GeV}$	$B_1 = 546.42 \text{ GeV}$ $B_2 = 268.79 \text{ GeV}$ $B_3 = 1932.49 \text{ GeV}$ $\mu = 1248.78 \text{ GeV}$ tap $\beta = 12.48$
$\varepsilon_2 = -3.06 \times 10^{-2} \text{ GeV}$	$tan \rho$ = 12.40

- We have got χ^2_{min} = 3.47 and $\frac{\chi^2_{min}}{D.O.F}$ = 0.87
- Neutrino masses at the best-fit point are $m_{
 u_1}=3.41 imes 10^{-6}$

eV, $m_{
u_2}=8.67 imes 10^{-3}$ eV and $m_{
u_3}=5.05 imes 10^{-2}$ eV

• $\sum m_
u = 0.059 \; {
m eV} o$ satisfies upper limit on the sum of neutrino masses coming from the cosmological data o $\sum m_
u < 0.12 \; {
m eV}$

Contribution to χ^2_{\min} from each observable

	Observable	Best-fit value	χ^2 contribution	Total contribution
	Δm_{21}^2	7.51×10^{-5}	2.1×10^{-3}	
	Δm_{31}^2	2.55×10^{-3}	2.45×10^{-2}	
Neutrino observables	θ_{13}	8.54	7.29×10 ⁻³	8.1×10^{-2}
	θ_{12}	34.40	1.06×10^{-2}	
	θ_{23}	49.10	3.43×10^{-2}	
Higgs Mass	m_h	124.70	9.5×10 ⁻³	9.5×10 ⁻³
Flavor Observales	$B \rightarrow X_{\rm s} + \gamma$	3.14×10^{-4}	1.43	1.50
	$B_s \rightarrow \mu^+ + \mu^-$	3.21×10 ⁻⁹	$6.9 imes 10^{-2}$	
	k _z	1.0	0.32	
	k_w	1.0	0.61	
	k_b	1.001856	0.43	
Higgs coupling	$k_{ au}$	1.001856	0.26	1.87
	k_{μ}	1.001856	8.8×10^{-3}	
	k_t	0.9999882	8.2×10^{-3}	
	k_{γ}	1.074519	0.21	

The dashed line corresponds to the best-fit point

Both are tightly constrained

- $\bullet \ [m_{\nu}]_{ij}^{(\varepsilon\varepsilon)} \propto \tfrac{1}{\tan^2\beta}$
- $\ \ \, [m_{\nu}]^{(BB)}_{ij}\propto \tan^2\beta$
- $\ \ \, [m_{\nu}]^{(\varepsilon B)}_{ij}\propto \tan\beta$
- Without loop contributions \rightarrow no mixing of neutrinos
- From theory $\tan\beta$ should not be very large or small
- = 2 σ allowed region for $\mu \rightarrow$ 1078-1423 GeV
- 2σ allowed region for $\tan\beta \rightarrow 10.5$ -15

• 2σ region are: $\varepsilon_1: -1.7 \times 10^{-2}$ to 4.0×10^{-3} GeV $\varepsilon_2: -2.1 \times 10^{-2}$ to 3.2×10^{-3} GeV $\varepsilon_3: -4.9 \times 10^{-2}$ to -1.5×10^{-2} GeV

- ε₁ − ε₂ − ε₃ parameter space is tightly constrained
- ε₃ is loosely constrained as compared to other two ε

- 2σ region are:
 - B1: 310 730 GeV
 - B2: 35 460 GeV
 - B₃: 1530 2285 GeV
- B₁ and B₂ have almost same allowed parameter space
- B₃ has large allowed parameter space
- They all are highly correlated and for large value of B₁, B₂ and B₃ are also large

2σ region are:

 $v_1: 1.2 \times 10^{-4} - 5.2 \times 10^{-3}$ GeV

 $v_2: 2.1 \times 10^{-4} - 5.9 \times 10^{-4}$ GeV

 $v_3: 7.2 \times 10^{-4} - 1.2 \times 10^{-3}$ GeV

 v₃ parameter space is loosely constrained as compared to v₁ and v₂

Results for IH scenario

The MCMC run for this scenario is still going on

Contribution to χ^2_{min} from each observable

	Observable	Best-fit value	χ^2 contribution	Total contribution
	Δm_{21}^2	7.49×10 ⁻⁵	6.82×10^{-4}	
	Δm_{31}^2	2.45×10^{-3}	2.07×10^{-3}	
Neutrino observables	θ_{13}	8.56	8.23×10^{-3}	4.85×10^{-3}
	θ_{12}	34.42	$1.03 imes 10^{-2}$	
	θ_{23}	49.33	2.72×10^{-2}	
Higgs Mass	m _h	123.98	0.11	0.11
	$B \rightarrow X_s + \gamma$	3.16×10 ⁻⁴	1.15	
Flavor Observales				1.22
	$B_s \rightarrow \mu^+ + \mu^-$	3.21×10^{-9}	0.07	
	kz	1.0	0.32	
	k_w	1.0	0.61	
	k_b	1.001822	0.43	
Higgs coupling	$k_{ au}$	1.001822	0.26	1.89
	k_{μ}	1.001822	8.84×10^{-3}	
	k_t	0.9999762	8.30×10^{-3}	
	k_{γ}	1.077167	0.23	
Total $\chi^2_{min}=$ 3.28				
$\frac{\chi^2_{min}}{D.0.F} = 0.82$				

Conclusion

- We have considered neutrino observables along with recent higgs data and flavor physics data
- We have considered minimal set of parameter including 9 BRPV prameters along with 2 MSSM parameters(μ and tan β)
- Scanned the parameter space using MCMC
- We obtained that the BRPV model can explain neutrino and other experimental data.
- We have also shown the allowed 1σ and 2σ region for each parameter space along with their correlation
- But the allowed parameter space is tightly constrained

