XXV DAE-BRNS High Energy Physics Symposium 2022

Contribution ID: 445

Type: Talk

Neutrino masses and mixing angles in the context of Bilinear R-parity violating supersymmetry

Tuesday 13 December 2022 15:15 (15 minutes)

In this work, we have explored a highly motivated beyond the Standard Model scenario, namely, R-parity violating supersymmetry, in the context of light neutrino mass and mixing. The R-parity is broken by only the lepton number violating the bilinear term. We try to fit two non-zero neutrino mass square differences and three mixing angle values obtained from the global chi-square analysis of neutrino oscillation data. We have also taken into account the updated data of Higgs mass, low energy flavor violating constraints like rare b-hadron decays, and Higgs coupling strengths with various Standard Model particles from LHC RUN-II data. We have used Markov Chain Monte Carlo(MCMC) to scan the parameter space of our model. After a detailed scan of the parameter space, we found that this model can explain data for the Normal Hierarchy scenario. We also represent 1σ and 2σ contour plots of different correlated parameters like Bilinear R-parity violating coupling parameters(ε_i), corresponding soft coupling parameters(B_i), μ , tan β etc.

Session

Beyond the Standard Model

Primary authors: Dr CHOUDHURY, Arghya (Department of Physics, Indian Institute of Technology Patna, Patna, Bihar-801106, India); Ms MONDAL, Arpita (Department of Physics, Indian Institute of Technology Patna, Patna, Bihar-801106, India); MITRA, Sourav (Surendranath College, 24/2 M. G. Road, Kolkata, West Bengal-700009, India); MONDAL, Subhadeep (School of Engineering and Applied Sciences, Department of Physics, Bennett University, Greater Noida, Uttar Pradesh-201310, India)

Presenter: Ms MONDAL, Arpita (Department of Physics, Indian Institute of Technology Patna, Patna, Bihar-801106, India)

Session Classification: WG2-Beyond the Standard Model