

Phenomenology of scalar leptoquarks: neutrino mass, g - 2, and *B*-anomalies

Presented by: Snehashis Parashar¹

Collaborators: Priyotosh Bandyopadhyay¹ \cdot Rusa Mandal² \cdot Kirtiman Ghosh³ \cdot Avnish³ \cdot

Anirban Karan⁴

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

³Instituto de Fisica Corpuscular (CSIC - Universitat de Valencia), Spain • ⁴Institute of Physics, Bhubaneswar, India

¹Indian Insititute of Technology, Hyderabad, India • ²Indian Institute of Technology, Gandhinagar, India

Leptoquarks (LQ)

- Coloured BSM particles, couple to a lepton and a quark.
- Can be scalar or vector.

Model 1: $R_2 + S_1$ $\widetilde{R}_{2}(3,2,1/6) = (\widetilde{R}_{2}^{2/3}, \widetilde{R}_{2}^{-1/3})^{T}, S_{1}(\overline{3},1,1/3)$ $\mathcal{L} \supset \mathcal{Y}_1^L \, \overline{Q}_L^c \, S_1(i\sigma_2) \, L_L + \mathcal{Y}_1^R \, \overline{u}_R^c \, S_1 \, l_R +$ $\mathcal{Y}_2 \ \overline{d}_R \widetilde{R}_2^T(i\sigma_2) L_L + \kappa H^{\dagger} \widetilde{R}_2 S_1 + h.c. \ [1]$

After EWSB, $\widetilde{R}_2^{-1/3}$ and $S_1^{-1/3}$ mix \rightarrow

Motivations 1

- Radiative Majorana mass of neutrinos.
- 4.2 σ experimental excess on $(g 2)_{\mu}$. $\Delta a_{\mu}^{Ex-SM} = (2.51 \pm 0.59) \times 10^{-9}$

Motivation 2

Contributes to *b*-decay anomalies:

– NC anomaly: $b \rightarrow s \mu^+ \mu^-$ - CC anomaly: $b
ightarrow c au^- ar{
u}$

Model 2: S_1 and S_3 separately $S_1(\bar{3}, 1, 1/3)$ $\mathcal{L}_{S_1} \supset \overline{Q^c}^i i\tau_2 Y_{S_1}^{i\alpha} L^{\alpha} S_1 + \overline{u_R^c}^i Z_{S_1}^{i\alpha} \ell_R^{\alpha} S_1 + h.c.$ $S_3(\bar{3},3,1/3) = (S_3^{4/3},S_3^{1/3},S_3^{-2/3})^T$ $\mathcal{L}_{S_3} \supset \overline{Q^c}^i Y_{S_2}^{i\alpha} i\tau_2 \tau \cdot S_3 L^{\alpha} + h.c.$ [2]

Benchmark: 3 sets of \mathcal{Y} , $M_{LQ} \sim 1.5$ TeV, $|\theta_{LQ}| \sim 0.618$ rad

Pair production at the LHC/FCC

Model signatures

- -2 light- or *c*-jet + OSD
- -5σ at 14 TeV, 130 fb⁻¹
- Distinguishing pure vs mixed LQ states
- $-\widetilde{R}_2^{+2/3}
 ightarrow d\ell^+$ via \mathscr{Y}_2 only, $X_{1,2}^{-1/3}
 ightarrow u\ell^-, \, d
 u$ via $\mathcal{Y}_1^{L,R}, \mathcal{Y}_2$.
- Four complementary final states are analyzed - discerns between $\widetilde{R}_2^{+2/3}$ and $X_{1,2}^{-1/3}$.
- Very difficult to segregate $X_1^{-1/3}$ and $X_2^{-1/3}$. Invariant mass reconstruction

$$Y_{S_1}^{33}, Z_{S_1}^{23}: b \to c\tau^- \bar{\nu} \qquad Y_{S_3}^{22}, Y_{S_3}^{32}: b \to s\mu^+\mu^-$$
Single production at the LHC/FCC
$$q - g \to LQ \ell/\nu: \text{ direct probes of } Y, Z.$$
Reach for S_1

Reach for S_3

Pair production at a $\mu^+\mu^-$ collider

Reach for S_3 at muon collider

 $pp \rightarrow W^+ \rightarrow \widetilde{R}_2^{+2/3} \overline{X}_{1,2}^{+1/3}$ More doublet $\% \rightarrow$ higher $\sigma_{Prod} \rightarrow$ probe of θ_{LQ}

Advantages

No ISR QCD background Cleaner signal Better reach and precision

Acknowledgements

SP acknowledges CSIR, India for funding his research.

Bibliography

[1] S. Parashar, A. Karan, Avnish, P. Bandyopadhyay, and K. Ghosh, Phys.Rev.D 106 (2022) 9, 095040.

[2] P. Bandyopadhyay, A. Karan, R. Mandal, and S. Parashar, Eur. Phys. J. C 82, 916 (2022).

ph20resch11006@iith.ac.in