

Search for the decay $B_{\rm s}^0 \to \pi^0 \pi^0$ at Belle

XXV DAE-BRNS High Energy Physics symposium 2022 **IISER** Mohali

12th - 16th December, 2022

Jvotirmoi Borah (on behalf of the Belle collaboration) Indian Institute of Technology Guwahati, Assam, India

- Heavy flavored hadrons decaying via "weak annihilation" Feynman diagrams are suppressed within the SM (O(
- In the last decade, study of these decays have gained impetus both theoretically and experimentally (LHCb/Belle) PRD 91, 344 014011 (2015)
- Their predicted branching fraction (\mathscr{B}) lies in the range of $10^{-6} 10^{-8}$
- However, owing to rescattering effects their \mathscr{B} can be enchanced upto a maximum of the order of 100 PRL 78, 21 (1997) PRD 87, 036008 (2013)
- Pure annihilation diagrams are an excellent probe to investigate new physics (NP) • Additionally, weak annihilation B_s^0 decays can be used to extract γ angle of the CKM matrix PLB 459 (1999)

Rescattering effect

Significant deviation between experiment and theory in the decay channel, $B_s^0 \to \pi^+ \pi^-$ PLB 740 (2015)

Motivation for studying weak annihilation rare decays in $B_{\rm s}^0$ mesons

(LHCb Collaboration) (Received 27 October 2016; published 21 February 2017)

JBorah | IITG

XXV DAE-BRNS HEP 2022

The Belle detector

NIM A **479** 117 (2003) / PTEP **2012** 04D001 (2012)

- \bullet General purpose 4π hermetic detector
- · Asymmetric in energy to provide Lorentz boost to B mesons required for CPV studies

- SVD : Vertex reconstruction of B mesons
- CDC : Measure momentum of charged tracks
- TOF/ACC : Particle identification together with CDC
- ECL : Measure energy deposition of charged and neutral particles

المحلف معاجل بالمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ

• KLM : Identification of K_L and μ

Production of B_s^0 mesons near $\Upsilon(5S)$ resonance

Outline / Analysis strategy

- It is a neutral, charmless, non-leptonic, strangeness non-conserving rare decay channel.

Quantity	Flavor SU(3)	pQCD	QCDF
$\mathscr{B}(10^{-6})$	0.40 ± 0.27	0.28 ± 0.09	0.13 ± 0.05

Phys. Rev. D 91, 344 014011 (2015)

• Within the Standard Model (SM), it proceeds via W-exchange and 'penguin'-annihilation topological diagrams.

'Penguin' annihilation

- Previously searched by L3 experiment in 1995 by producing B_s^0 from 3 million Z decays PLB 363, 127 (1995)
- Did not find any significant signal yield and hence put an UL on the \mathscr{B} of less than 2.1×10^{-4} at 90% CL
- First search at Belle with 121.4 fb⁻¹ of data collected at $\Upsilon(5S)$ resonance.

Signal MC study

$$M_{\rm bc} = \sqrt{E_{\rm beam}^{*2} - p_{B_s^0}^{*2}}$$

$$E_{\rm CM} = \sqrt{s} = 10.86 \; ({\rm GeV})$$

$$E^*_{\text{beam}} = E_{\text{CM}}/2 = E^*_{B^0_s}$$

XXV DAE-BRNS HEP 2022

$$\Delta E' = E^*_{B^0_s} - E^*_{\text{beam}} + M_{\text{bc}} - M_{B^0_s}$$

- $\Delta E'$ has a greater mass dependency than $M_{\rm bc}$
- $\Delta E'$ provides greater discrimination than $M_{\rm bc}$
- For correctly reconstructed signal candidates, $\Delta E'$ should peak around zero(0)
- However, neutrals in the final state cause shower leakage in the ECL crystals which elongates the tail of the distribution

Background MC study

Background MC statistics = $6 \times 121.4 \text{ fb}^{-1}$

Bsbs and non-bsbs backgrounds do not survive the selection criteria

Continuum is the dominant background !

XXV DAE-BRNS HEP 2022

Phys. Rev. Lett. 41, (1978)

3 mom. of ith and jth FSP

$$\mathbf{H}_{l} = \sum_{i,j}^{N} \frac{|\bar{P}_{i}| |\bar{P}_{j}|}{s} P_{l}(\cos\theta_{i,j})$$

Associated Legendre's Polynomial

Fox-Wolfram moments

Continuum Suppression: Neural Network

XXV DAE-BRNS HEP 2022

Neural network is used to classify the signal and the background !

NN output is transformed for easier parametrization

$$\mathscr{C}'_{NN} = log(\frac{\mathscr{C}_{NN} - \mathscr{C}_{NN(min)}}{\mathscr{C}_{NN(max)} - \mathscr{C}_{NN}})$$

 $\mathscr{C}_{\text{NN(min)}} = 0.90, \ \mathscr{C}_{\text{NN(max)}} = 0.99$

J.Borah | IITG

1D PDF parametrizations

XXV DAE-BRNS HEP 2022

Ensemble study : Fit bias, linearity and correlations

XXV DAE-BRNS HEP 2022

11

$$N_{yield}^{sig} = 80 \pm 14$$

XXV DAE-BRNS HEP 2022

Control sample : $B_d^0 \to \pi^0 \pi^0$ (similar final state)

Misreconstruction Signal region = 0.8%

Candidate region

$$-0.6 < \Delta E (GeV) < 0.2$$

 $5.22 < M_{bc} (GeV/c^2) <$

Signal region $-0.23 < \Delta E(GeV) < 0.15$ $5.27 < M_{bc}(GeV/c^2) < 5.29$

5.29

Summary of MC study for $B_s^0 \to \pi^0 \pi^0$

Discussion	
Event generation and simulation	1
Selection criteria	0.0
	-0.6 <
Signal reconstruction efficiency	
Multiple candidates	
BCS criteria	
Misreconstruction fraction Background MC study	
Correlation among fit variables ($\Delta E', M_{bc}, C'_{NN}$)	Neg
Perform 3D UML fit	
Control sample study	The $\mathcal{B}(B^0$ –
Ensemble study	Fit is
	We wil

Remarks

 $B_s^{*0}\bar{B}_s^{*0}, B_s^{*0}\bar{B}_s^0 + cc \text{ and } B_s^0\bar{B}_s^0$ 100k signal events for each expt. @ $121.4(fb)^{-1}$ of real data at $\Upsilon(5S)$ resonance

 $0.118 < M(\gamma \gamma) (GeV/c^2) < 0.152$ $E_{\gamma} > 0.050(0.100)(GeV)$ in barrel (endcaps) $<\Delta E' < 0.15, M_{bc} > 5.30$ in GeV units, $C'_{NN} > 0.90$

12.69%

10.4%(7.4%) in candidate (signal) region

 $\chi^2(B_s^0) = \chi^2_{min}(\pi^0) + \chi^2_{min}(\pi^0)$ Overall BCS efficiency = 96%

1.7%(1.2%) in candidate (signal) region

continuum is the only surviving background $(\text{ expect } 862 @ 121.4(\text{fb})^{-1})$

egligibe (1D PDF parametrizations can be done)

Extract signal in real data

 $\rightarrow \pi^0 \pi^0$) is obtained within 1σ of the previous Belle result.

- linear and is found to have insignificant correlation among the fit variables
- ll assign -3.3% as a source of systematic uncertainty coming from the fit bias.

BCS : Best Candidate Selection

 $\chi^2 = \frac{(M_{rec} - M_{PDG})^2}{2}$

Results for $B_s^0 \to \pi^0 \pi^0$

Signal enhanced projections : Signal region selection criteria has been applied for each of the distributions for the other two variables.

	Type	MC	Data	Region
Data equivalent to luminosity of 121.4 fb^{-1}	Signal	1	5.7 ± 5.8	Candidate
Signal and background yields are obtained from 3D fit to $M = \Delta E' \mathscr{C}'$	Background (continuum)	862	989 ± 32	Candidate
$110111 \text{ JD} 111 \text{ to } M_{bc}, \Delta L, \sigma_{NN}$		327	338 ± 19	Signal
	UL (90% CL)	$< 6.6 \times 10^{-6}$	$<7.7\times10^{-6}$	

XXV DAE-BRNS HEP 2022

ullet

ullet

- Solid blue : Total fit function
- Red dashed : Continuum background
- Cyan-filled : Signal

Source Fit bias Fixed PDF parame Fractions of $B_s^{*0}\bar{B}_s^{(}$ Reconstruction efficient $\mathcal{C}'_{\rm NN}$ requirement $\pi^0 \to \gamma \gamma$ selection $\mathcal{B}(\pi^0 \to \gamma \gamma)$ bb cross-section, σ_b f_s

Total

Systematic uncertainties in $B_s^0 \to \pi^0 \pi^0$ analysis procedures

	Value $(\%)$
etrization	-3.3 +3.5 -5.2 +5.2
ciency, ϵ_{rec}	$+3.5 \\ \pm 0.4 \\ +3.0$
efficiency	$\pm 3.0 \\ \pm 4.4 \\ \pm 0.03$
$b\overline{b}$	$\pm 4.7 \\ \pm 15.4$

+18.1-18.4

Branching fraction and upper limit (UL) calculation

$$\mathcal{B}(B_s^0 \to \pi^0 \pi^0) = \frac{N_{sig}}{N_{B_s^0 \bar{B}_s^0} \times \epsilon_{rec} \times \prod_{i=1}^2 \mathcal{B}(\pi^0 \to \gamma \gamma)}$$
$$= \frac{5.7}{16.6 \times 10^6 \times 0.1269 \times 0.9766}$$
$$= 2.8 \times 10^{-6}$$

$$\mathcal{B}(B_s^0 \to \pi^0 \pi^0) = (2.8 \pm 2.8 (\text{stat.}) \pm 0.5 (\text{syst.})) \times 10^{-6}$$

Use Bayesian approach to set UL on the branching fraction (assuming null or background only hypothesis)

$$\Delta \mathcal{B}_{\text{stat}} = \frac{\Delta N_{\text{sig}}}{N_{\text{sig}}} \times \mathcal{B}$$
$$= \frac{5.8}{5.7} \times 2.8 \times 10^{-6}$$
$$= 2.8 \times 10^{-6}$$

Significance = 1σ

Without systematics

$$\mathcal{B}(B_s^0 \to \pi^0 \pi^0) < 7.3 \times 10^{-6} @90\% CL$$

With systematics

$${\cal B}(B^0_s o \pi^0 \pi^0) < 7.7 imes 10^{-6} @90\% {
m CL}$$

• $f_s \times \mathcal{B}(B_s^0 \to \pi^0 \pi^0) < 1.5 \times 10^{-6} @90\% CL$

- this analysis.
- $0.5 \text{ (syst.)} \times 10^{-6}.$
- to estimate the upper limit on the branching fraction.
- $(< 2.1 \times 10^{-4} \text{ at } 90\% \text{ CL}).$

• We have analyzed data for all the experiments to look at the results for

• The branching fraction obtained after un-blinding is $(2.8 \pm 2.8 \text{ (stat.)} \pm$

• In absence of any significant signal yield, we use the Bayesian approach

• The upper limit on the branching fraction at 90% confidence level is calculated to be less than 7.7×10^{-6} . This is an improvement by a magnitude of twenty seven(27) from the previous upper limit set by L3 experiment

• The manuscript is ready for journal submission. (Belle publication council)

- Search for the decay $B_s^0 \rightarrow \eta' K_s^0$, T. Pang, V. Savinov et al., <u>PRD 106, 051123 (2022)</u>
- Search for the decay $B_s^0 \rightarrow \eta \eta$, B. Bhuyan, K. J. Nath, J. Borah et al., <u>PRD 105, 012007 (2022)</u>
- Search for the decay $B_s^0 \rightarrow \eta' \eta$, N. K. Nisar, V. Savinov et al., <u>PRD 104</u>, L031101 (2021)
- Search for $B_s^0 \rightarrow \eta' X_{s\bar{s}}$ at Belle using a semi-inclusive method, S. Dubey, T. E. Browder et al., <u>PRD 104, 012007 (2021)</u>

XXV DAE-BRNS HEP 2022

Additional slides

XXV DAE-BRNS HEP 2022

J.Borah | IITG

Event generation and event selection

Set of selection criteria selecting hadronic Bs events "

XXV DAE-BRNS HEP 2022

Decay process	Physics models
$\Upsilon(5S) \to B_s^{*0} \bar{B}_s^{*0}$	N-body phase space
$\Upsilon(5S) \to B_s^{*0} \bar{B}_s^0 + cc$	N-body phase space
$\Upsilon(5S) \to B^0_s \bar{B}^0_s$	Vector to scalar scalar
$B_s^{*0} \to B_s^0 \gamma$	Vector to scalar photon p-wave
$B^0_s \to \pi^0 \pi^0$	N-body phase space
$\pi^0 \to \gamma \gamma$	N-body phase space

EvtGen (generation) GEANT (simulation)

- A large sample of signal MC events are generated and simulated for experiments dedicated to $\Upsilon(5S)$ resonance.
- They are then scaled to their corresponding luminosities.
- Background MC study is performed with statistics which is six times the integrated luminosity of data collected at $\Upsilon(5S)$ resonance.

Signal MC study

MCtruth : Correctly reconstructed signal candidates

J.Borah | IITG

Background MC study

Background MC statistics = $6 \times 121.4 \text{ fb}^{-1}$

Continuum is the dominant background !

XXV DAE-BRNS HEP 2022

Continuum Suppression

Phys. Rev. Lett. 41, (1978)

Associated Legendre's Polynomial

Fox-Wolfram moments

- 16 modified Fox-Wolfram (mFW) moments are used to \bullet differentiate between signal and continuum
- Thrust axis : Axis along which there is a maximum projection of the 3-mom of the final state particles
- Thrust angle : Angle between the signal thrust axis and the ROE (Rest-of-event) thrust axis.

Neural network is used to classify the signal and the background !

16 mFW moments + thrust angle are given as inputs to neural network

Neural Network (NN) output

NN output is transformed for easier parametrization

$$\mathscr{C}_{NN}' = log(\frac{\mathscr{C}_{NN} - \mathscr{C}_{NN(min)}}{\mathscr{C}_{NN(max)} - \mathscr{C}_{NN}})$$

Modified FW moments PRD **66** 092002 (2002)

$$h_l^{so} = \sum_{i,j} p_i p_j P_l(\cos \theta_{ij}),$$

$$h_l^{oo} = \sum_{j,k} p_j p_k P_l(\cos \theta_{jk}),$$

where *i* enumerates *B* signal candidate particles (*s* particles) and j and k enumerate the remaining particles in the event (o particles); p_i is the *i*th particle's momentum, and $P_i(\cos \theta_{ii})$ is the *l*th Legendre polynomial of the angle θ_{ii} between particles *i* and *j*. The h_1^{so} terms contain information on the correlation between the *B* candidate direction and the direction of the rest of the event. The odd h_l^{oo} terms partially reconstruct the kinematics of the other B in the event while the even terms quantify the sphericity of the other side of the event. We create a six-variable Fisher discriminant called the super Fox-Wolfram defined as

$$SFW = \sum_{l=2,4} \alpha_l \left(\frac{h_l^{so}}{h_0^{so}} \right) + \sum_{l=1-4} \beta_l \left(\frac{h_l^{oo}}{h_0^{oo}} \right),$$

where α_l and β_l are the Fisher coefficients.

Correlation among the fit variables (Linear correlation coefficients)

XXV DAE-BRNS HEP 2022

Signal MC

J.Borah | IITG

Control Sample Study: $B_d^0 \to \pi^0 \pi^0$

Target Sample

Variables Variables Selection Criteria Photon ID Photon ID ! = 911 (MC only) $M_{\gamma\gamma}$ 0.118 $0.118 < M_{\gamma\gamma} < 0.152 \; (GeV/c^2)$ $M_{\gamma\gamma}$ E_{γ} 0.050 E_{γ} 0.050 (0.100) GeV barrel(endcaps) $\Delta E'$ -($-0.6 < \Delta E' < 0.15 \; (GeV)$ $\Delta E'$ M_{bc} $M_{bc} > 5.30 \ GeV/c^2$ M_{bc} ${\cal C}'_{NN}$ $\mathcal{C}'_{NN} > 0.90$ ${\cal C}'_{NN}$

- PDG Branching Fraction (BF) = $(1.59 \pm 0.26) \times 10^{-6}$
- Previous Belle result, $BF = (1.31 \pm 0.19 \pm 0.19) \times 10^{-6}$
- Reconstruction efficiency, $\epsilon = 11.16\%$
- Expected signal yield @ $619 \times 10^6 B\bar{B}$ pairs (SVD2) = 91
- Use 3D unbinned maximum likelihood fit to extract signal from date

Our aim is to test the analysis procedure using the control sa

XXV DAE-BRNS HEP 2022

Control Sample (MC)

		Control Sample (Data
Selection Criteria	Variables	Selection Criteria
! = 911 (MC only)	ECL timing	$9000 - 11000 \ ns$
$8 < M_{\gamma\gamma} < 0.152 \ (GeV/c^2)$	$M_{\gamma\gamma}$	$0.118 < M_{\gamma\gamma} < 0.152 \; (GeV$
$(0.100) \ GeV \ barrel(endcaps)$	E_{γ}	0.050 (0.100) GeV barrel(en
$0.6 < \Delta E' < 0.20 \; (GeV)$	$\Delta E'$	$-0.6 < \Delta E' < 0.20 \; (Ge)$
$M_{bc} > 5.22 \ GeV/c^2$	M_{bc}	$M_{bc} > 5.22 \ GeV/c^2$
$C'_{NN} > 0.90$	${\cal C}'_{NN}$	$\mathcal{C}'_{NN} > 0.90$

	MC sample	Experiment	Remarks
	Signal	55	100,000 scaled to expt.55 luminosity
	$e^+e^- \rightarrow q\bar{q}, (q \rightarrow u, d, s c)$	55	$6 \times$ real data
	$Y(4S) \rightarrow B^+B^-$	$37, \ 41, \ 43, \ 55$	$10 \times$ real data
ta	$Y(4S) \to B^0 \bar{B}^0$	$37, \ 41, \ 43, \ 55$	$10 \times$ real data
	$b \rightarrow u \text{ (charged)}$	$37, \ 41, \ 43, \ 55$	$50 \times$ real data
mple	$b \to u \text{ (mixed)}$	$37, \ 41, \ 43, \ 55$	$50 \times$ real data

Control Sample (Data)

1D PDF parametrizations: $B_d^0 \rightarrow \pi^0 \pi^0$

Variables	Selection Criteria	Truth Matched	Signal	uds	charm	bsbs	nonbsbs	Background
$M_{bc}~(GeV/c^2)$	$M_{bc} > 5.30$	147751	157279	1452869	239717	49	1757	1694392
$\Delta E' (GeV)$	$-0.60 < \Delta E' < 0.15$	$146274 \\ (1\%)$	$154134 \\ (2\%)$	$894766 \ (38\%)$	$140889 \\ (41\%)$	1 (83%)	$770 \\ (56\%)$	$1036433 \ (39\%)$
$E_{\gamma}~(GeV)$	$E_{\gamma} > 0.05(0.1)$ Barrel(Fwd/Bwd)	$140716 \\ (3.8\%)$	$144732 \\ (6.1\%)$	$831577 \ (7\%)$	$131537 \\ (6.6\%)$	$1\(12.5\%)$	$705 \\ (8.4\%)$	$963826 \ (7\%)$
$M_{\gamma\gamma}~(GeV/c^2)$	$0.118 < M_{\gamma\gamma} < 0.152$	$131007 \\ (6.9\%)$	$135470 \\ (6.4\%)$	$771407 \ (7.2\%)$	$120707 \\ (8.2\%)$	$0\(28\%)$	$653 \ (7.3\%)$	$892772 \\ (7.3\%)$
NN Output	$\mathcal{C}_{NN} > 0.90$	$62359 \\ (52\%)$	$63477 \\ (53\%)$	4439 $(99%)$	723 $(99%)$	_	0 (100%)	5169 $(99%)$

Table 7: Cut-flow table. The figures in the parenthesis indicates percentage loss. The backgrounds are considered for six streams.

Rare B_s^0 decays

Serial No.	Decay channel	DECAY.DEC	PDG	Remarks
		$\mathcal{B}(10^{-5})$	$\mathcal{B}(10^{-5})$	$\mathcal{B}(10^{-5})$
1	$B_s \to \rho^+ \rho -$	_	_	0.1(Theory)
2	$B_s o \eta \pi^0$	_	—	0.012(Theory)
3	$B_s o ar{K}^0_S \pi^0$	0.02	—	0.23(Theory)
4	$B_s ightarrow ar{K}^{ar{0}}_S K^0_S$	0.79	1.76	Re-generated
5	$B_s \rightarrow K^*(892)^{+}K^{-}$	_	1.9	_
6	$B_s \rightarrow K^*(892)^+ \pi^-$	_	0.29	_
7	$B_s \to K_2^*(1430)^+ K^-$	_	1.0	—
8	$B_s \to K_0^*(1430)^+ K^-$	_	3.1	—
9	$B_s \to K_0^* (1430)^+ \bar{K}^0$	_	3.3	_
10	$B_s \to K_0^{*0}(892)\bar{K}^0$	_	2.0	_
11	$B_s \to K_S^{0} \bar{K}^{*0}(892)$	_	1.6	_
12	$B_s \to K^{*0}(892)\bar{K}^{*0}(892)$	_	1.11	—
13	$B_s \rightarrow K_S^0 \pi^+ \pi^-$	_	0.95	—
14	$B_s ightarrow K_S^{ar 0} K^+ \pi^-$	_	0.84	—
15	$B_s \rightarrow K_S^{\bar{0}} K^+ K^-$	_	0.13	—

Expt. No.	Luminosity	Events	Events	Decay	\mathcal{B}	Expected
	$({\rm fb})^{-1}$	generated	passed	channel	$(10)^{-5}$	events @ $\Upsilon(5S)$
53	21.513	100000	2	$B_s \to \rho^+ \rho^-$	0.1	0.000032
			1	$B_s o \bar{K}^0_S \pi^0$	0.23	0.00038
67	27.22	100000	2	$B_s \to \rho^+ \rho^-$	0.1	0.000032
			1	$B_s o \bar{K}^0_S \pi^0$	0.23	0.00038
69	47.830	100000	5	$B_s \to \rho^+ \rho^-$	0.1	0.000083
			3	$B_s o \bar{K}^0_S \pi^0$	0.23	0.0011
71	22.938	100000	2	$B_s \to \rho^+ \rho^-$	0.1	0.000032
			1	$B_s o ar{K}^0_S \pi^0$	0.23	0.00038
						·

Table 9: List of decay channels considered for rare MC B_s background study.

Ensemble study (Pull distributions) : $B_s^0 \to \pi^0 \pi^0$

All signal parameters and background ARGUS end point is fixed All other background parameters are floated

Yield distributions from ensemble study

J.Borah | IITG

Addition of three production channels : 1D PDF parametrizations

Channel	Fraction
$B_s^* \bar{B}_s^*$	0.870 ± 0.017
${}_{s}^{*}\bar{B}_{s} + cc$	0.073 ± 0.014
35	PRD.87.031101

J.Borah | IITG

Data sideband/MC cross-check

Systematic uncertainty due to PDF parametrization and NN selection criterion

Sl. No	Variable	Channel	PDF	Parameters	Parameter Values	Yield (-1σ)	Yield	Yield $(+1\sigma)$					
1			G1	μ	5.367053 ± 0.000083	5.7	5.7	5.7					
2	$M_{\rm bc} \ ({\rm GeV/c^2})$	$B^0_s ar{B}^0_s$		σ	0.00599 ± 0.00011	5.7	5.7	5.7					
3				fraction	0.703 ± 0.012	5.7	5.7	5.7					
4			G2	σ	0.02023 ± 0.00041	5.7	5.7	5.7					
5		$B^0 ar{B}^0$		fraction	0.057 ± 0.022	5.6	5.7	5.7					
	Uncertainty						+0.0 -0.1						
6			G	μ	5.390079 ± 0.000072	5.7	5.7	5.7					
7				σ	0.00498 ± 0.00013	5.7	5.7	5.7					
8	$M_{\rm bc} ({\rm GeV/c^2})$	$B_{s}^{0}B_{s}^{*0} + cc$		σ	0.01242 ± 0.00033	5.7		5.7					
9			CB	α	1.333 ± 0.089	5.7	5.7	5.7					
10					5.0 ± 1.4	5.7	5.7	5.7					
11				fraction	0.406 ± 0.022	5.7	5.7	5.7					
12		$B^0_s \bar{B}^{*0}_s + cc$		fraction	0.073 ± 0.014	5.6	5.7	5.8					
	TT						+0.1		Type	Selection Criterion	Yield	$\epsilon_{Data}/\epsilon_{MC}$	R
1.0	Uncertainty				K 41000 + 0.0000F1	F 0	-0.1		<u>- J P - 5</u>				
13			G	μ	5.41283 ± 0.000051	5.6							
				σ	0.00411 ± 0.000083	5.0							
10 1c	M (C _a V/a^2)	רא (D*0		μ	$\begin{array}{c} 5.41130 \pm 0.00020 \\ 0.00766 \pm 0.00022 \end{array}$				Data	Without \mathcal{C}'_{NN} cut	85023 ± 292	0.011 ± 0.00035	
10	$M_{bc} (Gev/c^{-})$	D_s^+ D_s^+	CD	σ	$\begin{array}{c} 0.00700 \pm 0.00023 \\ 1.124 \pm 0.069 \end{array}$			$\begin{array}{c} 0.1 \\ 5.6 \\ \end{array}$			000 ± 01		
					1.134 ± 0.008 7 8 \pm 9 1	0.7 5.7				With $C_{NN} > 0.90$	989 ± 31		
10				fraction	1.0 ± 2.1 0.427 ± 0.021	0.7 5.6		5.7					1 1 1 0 1 0 1
19					0.437 ± 0.031	5.0	0.1	0.0					1.100 ± 0.0
20		$B_s^{*0} ar{B}_s^{*0}$		fraction	0.87 ± 0.017	5.6	5.7	5.4	MC	Without \mathcal{C}'_{NN} cut	86320 ± 294	0.010 ± 0.00033	
										With $C' > 0.90$	862 ± 20		
	Uncertainty						+0.4 -0.2			$\mathbf{V}_{NN} \ge 0.50$	002 ± 20		
91		all	ARGUS	m (end-point)	$5,434 \pm 0,000095$	5.8	57	5.8					
		(background)			0.101 ± 0.000000	0.0		0.0					
	Uncertainty	(sacing round)					+0.1						
22				11	-0.01695 ± 0.0010	5.6	$\frac{-0.1}{5.7}$	57					
$\frac{22}{23}$				$\int \frac{\mu}{\sigma_I}$	0.0983 ± 0.0021	5.6	5.7	5.7					
$\frac{1}{24}$	$\Delta E' (\text{GeV})$	all	ACB	σ_{R}	0.0507 ± 0.00056	5.6	5.7	5.7					
25				$\begin{vmatrix} & -n \\ & \alpha \end{vmatrix}$	0.916 ± 0.027	5.7	5.7	5.7					
26				n	6.38 ± 0.61	5.7	5.7	5.7					
	Uncertainty						+0.0 -0.2						
27				μ	1.475 ± 0.025	5.7	5.7	5.6					
28			BG	σ_L	1.792 ± 0.054	5.6	5.7	5.8					
29	\mathcal{C}'_{NN}	all		σ_{R}	1.992 ± 0.032	5.7	5.7	5.7					
30				μ	0.66 ± 0.33	5.7	5.7	5.6					
31			G	σ	2.77 ± 0.27	5.7	5.7	5.7					
32				fraction	0.106 ± 0.049	5.6	5.7	5.8					
	Uncertainty						+0.2 -0.1						
							0.1						
							+0.5						
	Total						-0.3						
	Uncertainty												
									37				I Borah IITG

791	21.3 Upper limit on the branching frac
792	The process of obtaining the upper limit (UL) is
793	1. Construct the profile likelihood, $-2ln\lambda$
794	likelihoods considering background only
795	the 3D fit, respectively.
796	2. Convolute the plain likelihood, λ with a 0
797	uncertainty estimated from the analysis.
798	procedures adopted for signal extraction
799	3. Integrate the convoluted plain likelihood
800	(CL) UL. Figure (47) shows the convolut

ction

is enumerated below (following the reference [20]),

 $= ln(\mathcal{L}_0) - ln(\mathcal{L}_{max})$ where, \mathcal{L}_0 and \mathcal{L}_{max} are the plain \mathcal{L}_{max} (no signal) hypothesis and maximum value obtained from

- Gaussian distribution of width equal to the total systematic We find the total systematic uncertainty associated with the to be $^{+18.1}_{-18.4}$ %.
- I upto 90% of its area to estimate the 90% confidence level ited likelihood obtained from real data.

Variable	Parameter	Data	Signal MC	Difference/Ratio	Comment
$\Delta E \ GeV$	μ	-0.02017 ± 0.0041	-0.01927 ± 0.0030	-0.0009 ± 0.0051	Floated
	σ_L	0.1013 ± 0.0083	0.0900 ± 0.0051	1.1256 ± 0.1115	Floated
	μ (Common)	5.27990 ± 0.00065	5.27977 ± 0.00038	0.00013 ± 0.00075	Floated
$M_{bc} \ GeV/c^2$	$\sigma~(~{ m CBall}~)$	0.00320 ± 0.00038	0.00317 ± 0.00013	1.00946 ± 0.11994	Floated
	σ (Gaussian)	0.00362 ± 0.00039	0.0035 ± 0.0002	1.0342 ± 0.12612	Floated

Inputs to the NN

Variable	Correlation coeff		
	M_{bc}	Δ	
k0et	0.0150	0.0	
k0mm2	-0.0048	-0.	
k0hoo0	-0.0065	0.0	
k0hoo1	0.003	0.0	
k0hoo2	0.0144	0.0	
k0hoo3	-0.0022	0.0	
k0hoo4	0.0071	0.0	
k0hso00	0.0123	0.0	
k0hso02	-0.0033	0.0	
k0hso04	-0.0076	-0.	
k0hso10	-0.0083	-0.	
k0hso12	-0.0385	-0.	
k0hso14	-0.0452	-0.	
k0hso20	-0.0196	0.0	
kohso22	-0.0426	-0.	
kohso24	-0.0051	-0.	
thrust	-0.0112	-0.	

J.Borah | IITG

