

Exploring millicharged dark matter components from the shadows

Lalit Singh Bhandari

Department of Physics,

Indian Institute of Science Education and Research Pune, Pune, India

Email: bhandari.lalitsingh@students.iiserpune.ac.in

Dec. 12, 2022

Outline

- Black hole shadow
- Shadow for millicharged dark matter plasma around a Schwarzschild black hole
 - 1) Constant mass density
 - 2) Radially in-falling
- Possible future bounds on millicharged dark matter based on black hole shadow measurements
- Summary

ournal of Cosmology and Astroparticle Physics

Exploring millicharged dark matter components from the shadows

Lalit S. Bhandari¹ and Arun M. Thalapillil

Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, India

 ${\bf E}\mbox{-mail: bhandari.lalitsingh} @ students.iis erpune.ac.in, thal apillil@iis erpune.ac.in \\$

Received February 11, 2022 Accepted March 2, 2022 Published March 18, 2022

JCAP 03 (2022) 03, 043

Black hole shadow

- Black holes (BHs) are **astrophysical compact object** having such **high gravity** that below some radial distance (event horizon), no matter or radiation can escape it.
- The "**shadow**" is defined as the region of the observer's sky that is left dark when there are light sources distributed everywhere at distances behind the black hole.
- For a static and spherically symmetric spacetime, the metric can be defined as,

$$ds^2 = -f(r)dt^2 + \frac{dr^2}{g(r)} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right)$$

- Photon trajectories (null geodesics) is determined by the Hamiltonian, $H_\gamma=\frac{1}{2}g^{\mu\nu}p_\mu p_\nu=0~.$
- Using above equation, the **photon sphere radius** is determined by the condition,

$$r_{\rm ph.}f'(r_{\rm ph.})=2f(r_{\rm ph.})$$

• Using the equation for photon trajectory, **shadow radius** can be obtained as, _____

$$r_{\rm sh.} = r_{\rm ph.} \sqrt{\frac{f(r_{\rm obs.})}{f(r_{\rm ph.})}}$$

• For Schwarzschild black hole,

$$f(r) = 1 - \frac{2M_{\rm BH}}{r}$$

 $r_{\rm ph.}^{\rm Sch.} = 3M_{\rm BH}$. $r_{\rm sh.}^{\rm Sch.} = 3\sqrt{3}M_{\rm BH}$

S. Chandershekhar (1983)

3

Millicharged dark matter plasma around black hole

- Various models of dark matter proposes an effective (but very weak) interaction of dark matter with light, which leads them to have a fractional charge and are called **millicharged (mCP) dark matter**. B. Holdom (1985)
- We consider a presence of two mCP species : \tilde{e} and \tilde{p} , with charges $-\epsilon q_e$, and $+\epsilon q_e$, and mass $m_{\tilde{e}}$ and $m_{\tilde{p}}$ respectively.
- The DM plasma frequency due to $\, \tilde{e} \,$ and $\, \tilde{p} \,$ is given by

$$\tilde{\omega}_p^2(r) = \frac{\epsilon^2 q_e^2}{\epsilon_o m_{\tilde{e}} m_{\tilde{p}}} \tilde{\rho}(r) \; . \qquad \tilde{\rho}(r$$

$$\widetilde{\rho}(r): {\rm Mass}$$
 density of mCP DM

• The modified Hamiltonian for photon trajectories is given by,

$$H_{\gamma} = \frac{1}{2} \left(g^{\mu\nu} p_{\mu} p_{\nu} + \tilde{\omega}_p^2(r) \right) = 0 \; . \qquad \text{Breuer and Ehlers (1981)}$$

• Using above equation, we can obtain the condition for determining photon sphere radius ,

$$\frac{d}{dr} \left[\frac{r^2}{f(r)} - \frac{\tilde{\omega}_p^2(r)r^2}{E^2} \right] \bigg|_{r=r_{\rm ph.}} = 0 \; . \label{eq:rescaled}$$

• The expression of shadow radius is obtained using the photon trajectory,

$$r_{\rm sh.} = r_{\rm ph.} \sqrt{\frac{f(r_{\rm obs.})}{f(r_{\rm ph.})} \frac{\left(1 - \frac{\tilde{\omega}_p^2(r_{\rm ph.})f(r_{\rm ph.})}{E^2}\right)}{\left(1 - \frac{\tilde{\omega}_p^2(r_{\rm obs.})f(r_{\rm obs.})}{E^2}\right)}}$$

Case I : Constant mass density dark matter plasma

• We take the mcP DM distribution to have constant mass density,

$$\tilde{\rho}(r) = \begin{cases} f_{\rm mCP} \, \rho_0 & R_{\rm Sch.} < r < \kappa R_{\rm Sch.} \ , \\ 0 & \kappa R_{\rm Sch.} \leq r \ . \end{cases}$$

 $\chi_d \equiv \frac{\epsilon^2 q_e^2 f_{\rm mCP} \rho_0}{\eta \epsilon_o m_{\tilde{p}}^2 \left(\frac{2\pi c}{\lambda_{\rm TM}}\right)^2}$

 f_{mCP} : Mass fraction of mCP DM to total DM ρ_0 : Total DM density

• Dimensionless dispersion parameter,

Fig. 1: Variation in the shadow/photon sphere radii with χ_d

- We found that the **photon sphere radius increases** and the **shadow radius decreases** as the dark matter plasma effect becomes more pronounced.
- It is found that the photon sphere radius can be as large as $6M_{\rm BH}$ (100% increase).
- The shadow radius can become $4M_{\rm BH}$ (~25% decrease).

Case I : Constant mass density dark matter plasma (cont.)

Fig. 2: Trajectory of the outgoing light rays near vivinity of (a) BH (b) observer

ϵ	$m_{\rm mCP.}~(eV)$	χ_d	$r_{\rm ph.}~(R_{\rm Sch.})$	$\frac{\Delta r_{\rm ph.}}{r_{\rm ph.}^{\rm Sch.}}$	$r_{\rm sh.}~(R_{\rm Sch.})$	$\frac{\Delta r_{\rm sh.}}{r_{\rm sh.}^{\rm Sch.}}$
10^{-17}	10^{-11}	~ 0	1.500	$\sim 0\%$	2.598	$\sim 0\%$
	10^{-12}	~ 0	1.500	$\sim 0\%$	2.598	$\sim 0\%$
	10^{-13}	0.02	1.503	0.23%	2.589	-0.34%
	$5 imes 10^{-14}$	0.08	1.514	0.94%	2.562	-1.4%
	$1.5 imes 10^{-14}$	0.90	1.856	24%	2.089	-20%
	1×10^{-14}	2.03	(No photon sphere)	—	(No shadow)	—

 $f_{\rm mCP} \rho_0 = 6.9 \times 10^{13} {\rm M}_{\odot}/(Kpc)^3, \, M_{\rm BH} = 6.5 \times 10^9 {\rm M}_{\odot}, \, m_{\tilde{e}}/m_{\tilde{p}} = 1 \text{ and } \lambda = 1.3 \, {\rm mm}, \, \kappa = 10^3$

Table. 1: Photon sphere and shadow radii for few representative points in the viable mCP parameter space

Case II : Radially in-falling dark matter plasma

• We take the steady radial accretion of mcP DM. It will have a distribution ,

$$\tilde{\rho}(r) = \begin{cases} \frac{f_{\rm mCP} \dot{M}_{ac}}{4\pi c \sqrt{R_{\rm Sch.}} r^3} & R_{\rm Sch.} < r < \kappa R_{\rm Sch.} \\ 0 & \kappa R_{\rm Sch.} \leq r \; . \end{cases}$$

 $f_{\rm mCP}: {\rm Mass}$ fraction of mCP DM to total DM $\dot{M}_{\rm ac}:$ Acceration rate of the DM

• Dimensionless dispersion parameter,

$$\chi_d \equiv \frac{\epsilon^2 q_e^2 f_{\rm mCP} \dot{M}_{ac}}{4\pi\epsilon_o c m_{\tilde{e}} m_{\tilde{p}} R_{\rm Sch.}^2 \left(\frac{2\pi c}{\lambda_{\rm EM}}\right)^2}$$

- We found that the **photon sphere radius increases** and the **shadow radius decreases** as the dark matter plasma effect becomes more pronounced.
- It is found that the photon sphere radius can be as large as $10/3~M_{\rm BH}$ (~11% increase).
- The shadow radius can vanish to 0 (~100% decrease).

Case II : Radially in-falling dark matter plasma (cont.)

 $\mathrm{f_{mCP}}\dot{M}_{ac}=0.1\mathrm{M_{\odot}}/\mathrm{Year},\,M_{\mathrm{BH}}=6.5\times10^{9}\mathrm{M_{\odot}},\,m_{\tilde{e}}/m_{\tilde{p}}=1\text{ and }\lambda=1.3\,\mathrm{mm},\,\kappa=10^{3}$

ϵ	$m_{\rm mCP.}~(eV)$	χ_d	$r_{_{\mathrm{ph.}}}\left(R_{_{\mathrm{Sch.}}} ight)$	$\frac{\Delta r_{\rm ph.}}{r_{\rm ph.}^{\rm Sch.}}$	$r_{_{\rm sh.}}~(R_{_{\rm Sch.}})$	$rac{\Delta r_{ m sh.}}{r_{ m sh.}^{ m Sch.}}$
2×10^{-18}	10^{-14}	0.08	1.502	0.12%	2.579	-0.72%
	5×10^{-15}	0.32	1.507	0.49%	2.523	-2.9%
	1.5×10^{-15}	3.51	1.597	6.5%	1.545	-41%
	1.25×10^{-15}	5.05	1.653	10%	0.649	-75%
	$1 imes 10^{-15}$	7.88	(No photon sphere)	—	(No shadow)	—

Table. 1: Photon sphere and shadow radii for few representative points in the viable mCP parameter space

Results for some astrophysical black hole and possible future bounds on mCP

Blackhole	Mass $({\rm M}_{\odot})$	$f_{\rm mCP}\rho_o$	ϵ	$m_{\rm mCP}({\rm eV})$	χ_d	$\frac{\Delta r_{\rm ph.}}{r_{\rm ph}^{\rm Sch.}}$	$\frac{\Delta r_{\rm sh.}}{r_{\rm sh}^{\rm Sch.}}$
		$({\rm GeV/cm^3})$				pn.	511.
$M87^*$	$6.5 imes 10^9$	10^{6}	10^{-17}	$2.5 imes 10^{-14}$	0.12	1.5%	-2.1%
			10^{-18}	2×10^{-15}	0.19	2.4%	-3.4%
Sgr A^*	4.3×10^6	10^{9}	10^{-17}	10^{-12}	0.08	0.90%	-1.3%
			10^{-18}	1.5×10^{-13}	0.03	0.39%	-0.58%
NGC104	2.3×10^3	10^{12}	10^{-17}	$6.5 imes 10^{-11}$	0.02	0.21%	-0.31%
			10^{-18}	7.5×10^{-12}	0.01	0.15%	-0.23%

(a)

Blackhole	Mass $({\rm M}_{\odot})$	$f_{\rm mCP} \dot{M}_{ac}$	ϵ	$m_{\rm mCP}({\rm eV})$	χ_d	$\frac{\Delta r_{\rm ph.}}{r_{\rm ph}^{\rm Sch.}}$	$\frac{\Delta r_{\rm sh.}}{r_{\rm sh}^{\rm Sch.}}$
		$(M_{\odot}/Year)$				p	
M87*	$6.5 imes 10^9$	1	10^{-17}	2.5×10^{-14}	3.16	5.7%	-35%
			10^{-18}	2×10^{-15}	4.93	9.9%	-71%
Sgr A*	4.3×10^6	10^{-3}	10^{-17}	10^{-12}	4.51	8.8%	-59%
			10^{-18}	$1.5 imes 10^{-13}$	2.00	3.4%	-20%
NGC104	2.3×10^3	10^{-6}	10^{-17}	$6.5 imes 10^{-11}$	3.73	7%	-44%
			10^{-18}	7.5×10^{-12}	2.8	5.0%	-30%

(b)

Table 1: Variations in the photon sphere and shadow radii for a few candidategalactic black holes.(a) constant mass density (b) radially in-fallingDM plasma.

Fig. 1: Regions of the mCP parameter space that are excluded if one requires that $\Delta r_{\rm sh.}/r_{\rm sh.}^{\rm Sch.} < 20\%$ for M87* black hole.

Summary

- We found that the **photon sphere radius increases** and the **shadow radius decreases** as the dark matter plasma effect becomes more pronounced, as a function of the millicharged particle mass and charge.
- In the **constant mass density case**, it is found that the relative increase in the photon sphere radius can be as large as ~ 100%, and relative decrease in shadow radius can be ~25%.
- For **radially in-falling** dark matter plasma upto ~ 11% relative increase in the photons sphere radius and upto ~ 100% relative decrease in the shadow radius can be observed.
- We have also speculated possible exclusion limits on the millicharged particle parameter space $(\epsilon m_{\rm mcp.})$ based on future precise observations of black hole shadow.

Thank You

Millicharged particle

• In a simplest model, with a dark U(1) gauge group, the Lagrangian will contain the kinetic mixing term,

$$\mathcal{L} \supset -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} \tilde{F}^{\mu\nu} \tilde{F}_{\mu\nu} - \frac{\chi}{2} F^{\mu\nu} \tilde{F}_{\mu\nu} \; . \label{eq:L_loss}$$

• Scalar field in a dark sector has the coupling with dark gauge field,

$$\mathcal{L}^{\rm s} \supset \left(\tilde{D}_{\mu}\tilde{\phi}\right)^{\dagger} \left(\tilde{D}^{\mu}\tilde{\phi}\right) - m_{\tilde{\phi}}^{2} |\tilde{\phi}|^{2} \quad \text{ where, } \tilde{D}_{\mu} = \partial_{\mu} + i\tilde{q}\tilde{A}_{\mu} \; .$$

• We require the canonical normalization of the gauge field kinetic terms, which is done by field redefinition,

$${\tilde A}_\mu o {\tilde A}_\mu - \chi A_\mu$$
 .

• The dark sector scalar field develops a **coupling with visible sector physical boson**,

$$\mathcal{L}^{\rm s} \supset \left(D_{\mu} \tilde{\phi} - i \chi \tilde{q} A_{\mu} \tilde{\phi} \right)^{\dagger} \left(D^{\mu} \tilde{\phi} - i \chi \tilde{q} A^{\mu} \tilde{\phi} \right) - m_{\tilde{\phi}}^{2} |\tilde{\phi}|^{2} \ .$$

• Therefore, the dark sector particle will be **effectively seen as a fractionally charged particle**, by the visible sector photon, with electromagnetic charge,

$$\epsilon = \frac{\chi \tilde{q}}{q_e}$$
 . where q_e is the charge of an electron.
B.Holdom (1986)

Constraint on millicharged particle

- We have obtained constraint on mass fraction (f_{mCP}) of mCP DM to total DM by investigating **bullet clusters**.
- The subcluster will lose mass, when after collision the particles have velocity greater than escape velocity of cluster, which will happen for the angles,

$$\frac{v_{\text{esc}}}{v} < \cos \theta < \sqrt{1 - \left(\frac{v_{\text{esc}}}{v}\right)^2} \; .$$

- v: velocity of main cluster particles in the rest frame of subcluster.
- $v_{\rm esc}$: escape velocity for a particle in subcluster.
 - θ : scattering angle in rest frame of subcluster.

• The differential cross section for mCP-mCP scattering is,

L

$$\frac{d\sigma}{d\Omega} = \frac{\epsilon^4 \alpha^2 \hbar^2 c^2}{4m_{\rm mCP}^2 v^4 \sin^4(\theta/2)} ,$$

• Using above equation, we get the probability that a particle in subcluster will get knocked out,

$$\mathcal{P} \equiv f_{\rm mCP} \frac{\Sigma_s}{m_{\rm mCP}} \int_{\theta_{\rm min}}^{\theta_{\rm max}} d\Omega \frac{d\sigma}{d\Omega} = \frac{2\pi f_{\rm mCP} \Sigma_s \epsilon^4 \alpha^2 \hbar^2 c^2}{m_{\rm mCP}^3 v^4} \left(\frac{1}{1 - \cos \theta_{\rm min}} - \frac{1}{1 - \cos \theta_{\rm max}} \right) \frac{\Sigma_s : \text{DM surface mass density}}{\text{Feng (2009)}} \frac{\Sigma_s : \text{DM surface mass density}}{\text{Feng (2009)}}$$

- Taking the data from the Bullet clusters, and assuming the mass lost in the collision is less than 25%, we obtain the relation, $f_{\rm mCP} \, \epsilon^4 \alpha^2 \lesssim 10^{-33} \left(\frac{m_{\rm mCP}}{\Delta V} \right)^3 \; . \label{eq:fmcP}$ $\Sigma_s\simeq 0.3\,{\rm g/cm^2}~, v\simeq 4800\,{\rm Km/s}~, v_{\rm esc}\simeq 1200\,{\rm Km/s}~.$ Markevitch et al. (2004)
- For example $\epsilon \sim 10^{-14}$ and $m_{_{\rm mCP}} \sim 10^{-10} {\rm eV}$ it is found that $~f_{_{\rm mCP}} \leq 0.2\%$. Conservatively we take $~f_{_{\rm mCP}} = 0.1\%$. •

Case I : Constant mass density dark matter plasma

• We take the mcP DM distribution to have constant mass density,

• Shadow radius is given by,

$$r_{\rm sh.} = \sqrt{\left(1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}} - \chi_g \frac{R_{\rm Sch.}}{r_{\rm obs.}} \left(\kappa^3 - 1\right)\right) \left(\frac{r_{\rm ph.}^2}{1 - \frac{R_{\rm Sch.}}{r_{\rm ph.}} - \chi_g \left(\left(\frac{r_{\rm ph.}}{R_{\rm Sch.}}\right)^2 - \left(\frac{R_{\rm Sch.}}{r_{\rm ph.}}\right)\right)} - \chi_d r_{\rm ph.}^2\right)} \\ \cdot \frac{r_{\rm sh.}}{R_{\rm Sch.}}\Big|_{\chi_g \ll \chi_g} = \frac{1}{4} \sqrt{\frac{-18(3 + \sqrt{9 - 8\chi_d}) + 8(9 + 2\sqrt{9 - 8\chi_d} - 2\chi_d)\chi_d}{\chi_d - 1}} \left(\sqrt{1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}}}\right) , \quad \chi_d < 1 .$$

A. Burket (1995)

Case I : Constant mass density dark matter plasma

• We take the mcP DM distribution to have constant mass density,

• Shadow radius is given by,

$$r_{\rm sh.} = \sqrt{\left(1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}} - \chi_g \frac{R_{\rm Sch.}}{r_{\rm obs.}} \left(\kappa^3 - 1\right)\right) \left(\frac{r_{\rm ph.}^2}{1 - \frac{R_{\rm Sch.}}{r_{\rm ph.}} - \chi_g \left(\left(\frac{r_{\rm ph.}}{R_{\rm Sch.}}\right)^2 - \left(\frac{R_{\rm Sch.}}{r_{\rm ph.}}\right)\right)} - \chi_d r_{\rm ph.}^2\right)} \\ \cdot \frac{r_{\rm sh.}}{R_{\rm Sch.}} \bigg|_{\chi_g \ll \chi_g} = \frac{1}{4} \sqrt{\frac{-18(3 + \sqrt{9 - 8\chi_d}) + 8(9 + 2\sqrt{9 - 8\chi_d} - 2\chi_d)\chi_d}{\chi_d - 1}} \left(\sqrt{1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}}}\right) , \quad \chi_d < 1 .$$

A. Burket (1995)

Case II : Radially in-falling dark matter plasma

• We take the steady radial accretion of mcP DM. It will have a distribution ,

$$\tilde{\rho}(r) = \begin{cases} \frac{f_{\rm mCP} \dot{M}_{ac}}{4\pi c \sqrt{R_{\rm Sch.}} r^3} & R_{\rm Sch.} < r < \kappa R_{\rm Sch.} \\ 0 & \kappa R_{\rm Sch.} \leq r \; . \end{cases}$$

 $f_{\scriptscriptstyle\rm mCP}: {\rm Mass}$ fraction of mCP DM to total DM $\dot{M}_{\rm ac}$: Acceration rate of the DM

1011

• g_{tt} component of the metric is given by ,

$$f(r) = \begin{cases} 1 - \frac{R_{\rm Sch.}}{r} - \frac{4G\dot{M}_{ac}}{3c^3 R_{\rm Sch.}^{\frac{1}{2}} r} \left(r^{\frac{3}{2}} - R_{\rm Sch.}^{\frac{3}{2}}\right) & R_{\rm Sch.} < r < \kappa R_{\rm Sch.} \ , \qquad \qquad \chi_g \equiv \frac{4GM_{ac}}{3c^3} \ , \\ 1 - \frac{R_{\rm Sch.}}{r} - \frac{4G\dot{M}_{ac}R_{\rm Sch.}}{3c^3 r} \left(\kappa^{\frac{3}{2}} - 1\right) & \kappa R_{\rm Sch.} \le r \ . \qquad \qquad \chi_d \equiv \frac{\epsilon^2 q_e^2 f_{\rm mCP} \dot{M}_{ac}}{4\pi\epsilon_o cm_{\tilde{e}} m_{\tilde{p}} R_{\rm Sch.}^2 E^2} \ . \end{cases}$$

• The photon sphere radius is,

$$\frac{d}{dr} \left[\frac{r^2}{1 - \frac{R_{\rm Sch.}}{r} - \chi_g \left(\left(\frac{r}{R_{\rm Sch.}} \right)^{\frac{1}{2}} - \left(\frac{R_{\rm Sch.}}{r} \right) \right)} - \chi_d r^2 \left(\frac{R_{\rm Sch.}}{r} \right)^{\frac{3}{2}} \right] \right|_{r=r_{\rm ph.}} = 0 \ . \qquad \frac{r_{\rm ph.}}{R_{\rm Sch.}} \simeq \frac{3}{2} + \frac{\chi_d}{18\sqrt{6}} + \frac{3}{16} \left(-8 + 3\sqrt{6} \right) \chi_g + O(\chi_{g,d}^2) \ .$$

• Shadow radius will be,

 R_{s}

$$r_{\rm sh.} = \sqrt{\left(1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}} - \chi_g \frac{R_{\rm Sch.}}{r_{\rm obs.}} \left(\kappa^{\frac{3}{2}} - 1\right)\right) \left(\frac{r_{\rm ph.}^2}{1 - \frac{R_{\rm Sch.}}{r_{\rm ph.}} - \chi_g \left(\left(\frac{r_{\rm ph.}}{R_{\rm Sch.}}\right)^{\frac{1}{2}} - \left(\frac{R_{\rm Sch.}}{r_{\rm ph.}}\right)\right)} - \chi_d r_{\rm ph.}^2 \left(\frac{R_{\rm Sch.}}{r_{\rm ph.}}\right)^{\frac{3}{2}}\right)}{\frac{r_{\rm sh.}}{R_{\rm Sch.}}} \sim \frac{3\sqrt{3}}{2} \left(1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}}\right)^{\frac{1}{2}} - \frac{\chi_d}{3\sqrt{2}} \left(1 - \frac{R_{\rm Sch.}}{r_{\rm obs.}}\right)^{\frac{1}{2}} - \frac{3\sqrt{3}\chi_g}{8} \left(3\sqrt{6} \left(1 - \frac{r_{\rm obs.}}{R_{\rm Sch.}}\right) + 4\frac{r_{\rm obs.}}{R_{\rm Sch.}} - 6 + 2\kappa^{\frac{3}{2}}\right) \left(\frac{R_{\rm Sch.}^2}{r_{\rm obs.} - R_{\rm Sch.}}\right)^{\frac{1}{2}} + \mathcal{O}(\chi_{g,d}^2)$$