Asymmetric Dark Matter From Semi-annihilation

Deep Ghosh

In collaboration with Avirup Ghosh, S. Mukhopadhyay

based on JHEP 08 (2020) 149

IACS, Kolkata

XXVth DAE-BRNS HEP Symposium 2022

December 14,2022

Thermal (particle) Dark matter

- A system in thermodynamic equilibrium is described by two independent intensive variables, namely temperature (T) and the chemical potential (μ).
- If DM is thermalized in the early universe then its density is given by temperature (T_{DM}) and a chemical potential (μ_{DM}) in general.

< 同 > < 回 > < 回 > -

Thermal (particle) Dark matter

- A system in thermodynamic equilibrium is described by two independent intensive variables, namely temperature (T) and the chemical potential (μ) .
- If DM is thermalized in the early universe then its density is given by temperature (T_{DM}) and a chemical potential (μ_{DM}) in general.
- Non-zero chemical potential implies a difference (*asymmetry*) in particle-antiparticle number densities.

 $n_{DM} - n_{\overline{DM}} \propto T_{DM}^3 \sinh{(\mu_{DM}/T_{DM})}$

Thermal (particle) Dark matter

- A system in thermodynamic equilibrium is described by two independent intensive variables, namely temperature (*T*) and the chemical potential (μ).
- If DM is thermalized in the early universe then its density is given by temperature (T_{DM}) and a chemical potential (μ_{DM}) in general.
- Non-zero chemical potential implies a difference (*asymmetry*) in particle-antiparticle number densities.

$$n_{DM} - n_{\overline{DM}} \propto T_{DM}^3 \sinh{(\mu_{DM}/T_{DM})}$$

- $T_{DM} = T_{SM}, \mu_{DM} = 0$: WIMP, symmetric Lee, Weinberg, 1977
- 2) $T_{DM} = T_{SM}, \mu_{DM}
 eq 0$: Thermal asymmetric DM Nussinov, 1985
- $T_{DM} \neq T_{SM}, \mu_{DM} = 0 : HS DM$, symmetric Cheung et al. JHEP(2011)
- $T_{DM} \neq T_{SM}, \mu_{DM} \neq 0$: HS DM, asymmetric

The role of chemical potential

Consider a complex scalar DM, χ with mass m_{χ} whose relic density is set by freeze-out of $\chi + \chi^{\dagger} \rightarrow SM + SM$

$$rac{dY_{\chi}}{dx} = -rac{\lambda \left\langle \sigma v
ight
angle_{ann}}{x^2} \left(Y_{\chi} Y_{\chi^{\dagger}} - Y_{\chi}^{eq^2}
ight), \; \lambda = 1.32 \, M_{
m P} \, m_{\chi} \, g_*^{1/2} \ Y_{\chi} - Y_{\chi^{\dagger}} = C \quad (ext{related to } \mu_{\chi})$$

Relic density in presence of chemical potential

$$\Omega_{\rm DM} = \frac{s_0}{\rho_c} m_{\chi} C \coth\left(\frac{C\lambda \langle \sigma v \rangle_{ann}}{2x_d}\right)$$

The role of chemical potential

Consider a complex scalar DM, χ with mass m_{χ} whose relic density is set by freeze-out of $\chi + \chi^{\dagger} \rightarrow SM + SM$

$$egin{aligned} rac{dY_\chi}{dx} &= -rac{\lambda \left< \sigma v \right>_{ann}}{x^2} \left(Y_\chi Y_{\chi^\dagger} - Y_\chi^{eq^2}
ight), \; \lambda = 1.32 \, M_{
m P} \, m_\chi \, g_*^{1/2} \ Y_\chi - Y_{\chi^\dagger} &= C \quad (ext{related to } \mu_\chi) \end{aligned}$$

Relic density in presence of chemical potential

$$\Omega_{\mathrm{DM}} = rac{s_0}{
ho_c} m_\chi C \coth\left(rac{C\lambda \langle \sigma v
angle_{ann}}{2 x_d}
ight)$$

Symmetric limit : C
ightarrow 0, $\Omega_{\mathrm{DM}} = rac{s_0}{
ho_c} m_\chi rac{2x_d}{\lambda \langle \sigma v \rangle_{ann}}$ (WIMP scenario)

Asymmetric limit : For sufficiently large pair annihilation only particles (antiparticles) survive.

$$\Omega_{\rm DM} = \frac{s_0}{\rho_c} m_{\chi} C$$
 (Relic = asymmetry)

Question : How is C generated dynamically in the early universe ?

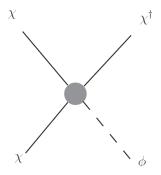
Question : How is C generated dynamically in the early universe ? First generate C via CP-violating processes, subsequently remove the symmetric part via strong pair annihilation process.

A (10) A (10)

Question : How is C generated dynamically in the early universe ?

First generate C via CP-violating processes, subsequently remove the symmetric part via strong pair annihilation process.

Can we do it by just one kind of process ?


Question : How is C generated dynamically in the early universe ?

First generate C via CP-violating processes, subsequently remove the symmetric part via strong pair annihilation process.

Can we do it by just one kind of process ?

•
$$\Delta(n_{\chi} + n_{\chi^{\dagger}}) = -1$$

 $\Delta(n_{\chi} - n_{\chi^{\dagger}}) = -3$

- φ is a neutral unstable state, decays or mixes with SM states.
- For on-shell production of ϕ , $m_{\chi} > m_{\phi}$

Key Point : Thermal decoupling of semi-annihilation produces ADM

Semi-annihilation Continued...

Initial conditions

$$m{Y}_{\chi}(\pmb{x}_i) = m{Y}_{\chi^{\dagger}}(\pmb{x}_i) \stackrel{semi-annihilation}{\Longrightarrow} m{Y}_{\chi}(\pmb{x}_d)
eq m{Y}_{\chi^{\dagger}}(\pmb{x}_d)$$

$$egin{aligned} &rac{dY_\chi}{dx} = -rac{s}{Hx}iggl[A_sigl(Y_\chi^2+rac{Y_0Y_\chi}{2}igr)-B_sigl(rac{Y_\chi^2}{2}+Y_0Y_{\chi^\dagger}igr)iggr] \ &rac{dY_{\chi^\dagger}}{dx} = -rac{s}{Hx}igl[B_sigl(Y_{\chi^\dagger}^2+rac{Y_0Y_{\chi^\dagger}}{2}igr)-A_sigl(rac{Y_\chi^2}{2}+Y_0Y_\chiigr)iggr] \ &A_s = igl\langle\sigma v
angle_s+igl\langle\epsilon\sigma v
angle_s, \qquad B_s = igl\langle\sigma v
angle_s-igl\langle\epsilon\sigma v
angle_s \end{aligned}$$

The relic density is a function of semi-annihilation cross-section $(\langle \sigma v \rangle_S)$, *CP*-violation parameter $(\epsilon_{eff} = \frac{\langle \epsilon \sigma v \rangle_s}{\langle \sigma v \rangle_s})$ and the DM mass (m_{χ}) .

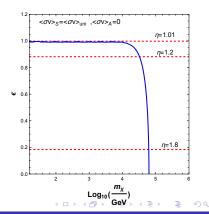
Semi-annihilation Continued...

Initial conditions

$$m{Y}_{\chi}(\pmb{x}_i) = m{Y}_{\chi^{\dagger}}(\pmb{x}_i) \stackrel{semi-annihilation}{\Longrightarrow} m{Y}_{\chi}(\pmb{x}_d)
eq m{Y}_{\chi^{\dagger}}(\pmb{x}_d)$$

$$egin{aligned} &rac{dY_\chi}{dx} = -rac{s}{Hx}iggl[A_sigl(Y_\chi^2+rac{Y_0Y_\chi}{2}igr)-B_sigl(rac{Y_\chi^2}{2}+Y_0Y_{\chi^\dagger}igr)iggr] \ &rac{dY_{\chi^\dagger}}{dx} = -rac{s}{Hx}iggl[B_sigl(Y_{\chi^\dagger}^2+rac{Y_0Y_{\chi^\dagger}}{2}igr)-A_sigl(rac{Y_\chi^2}{2}+Y_0Y_\chiigr)iggr] \ &A_s = igl\langle\sigma v
angle_s+igl\langle\epsilon\sigma v
angle_s, \qquad B_s = igl\langle\sigma v
angle_s-iggl\langle\epsilon\sigma v
angle_s \end{aligned}$$

The relic density is a function of semi-annihilation cross-section $(\langle \sigma v \rangle_S)$, *CP*-violation parameter ($\epsilon_{eff} = \frac{\langle \epsilon \sigma v \rangle_S}{\langle \sigma v \rangle_S}$) and the DM mass (m_{χ}). Q1. How large the semi-annihilation cross-section can be ? Q2. How large the mass of a semi-annihilating DM can be ?

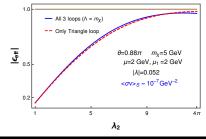

S-matrix Unitarity

 $\langle \sigma v \rangle_s$ is bounded from S-matrix unitarity, which in turn gives the upper bound on the DM mass

 $\langle \sigma v
angle_{
m uni} = (4\pi/m_\chi^2) (x_d/\pi)^{1/2}$ (for s-wave annihilation) Griest et al. 1990

$$\begin{split} \eta &= \frac{Y_{\chi}(x_d) + Y_{\chi^{\dagger}}(x_d)}{Y_{\chi}(x_d)} \\ \eta &\to 1 : \text{ only particle (or antiparticle) survives.} \\ \eta &\to 2 : \text{ Both particle and antiparticle exist in} \\ \text{equal abundance.} \end{split}$$

- $\eta \rightarrow 1$ for $\epsilon_{eff} \rightarrow 1$, then the DM mass, $m_{\chi} \leq 15$ GeV.
- For purely symmetric semi-annihilation ($\epsilon_{eff} = 0$), the DM mass, $m_{\chi} \le 80$ TeV WIMP Bound : $m_{\chi} \lesssim 100$ TeV

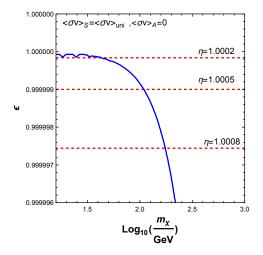


Asymmetric Dark Matter From Semi-annihilation

Model realization of Semi-annihilation

Z_3 symmetric Lagrangian

$$\mathcal{L} \supset \frac{1}{3!} \left(\mu \chi^3 + h.c \right) + \frac{1}{3!} \left(\lambda \chi^3 \phi + h.c \right) + \frac{\lambda_1}{4} (\chi^{\dagger} \chi)^2 + \frac{\lambda_2}{2} \phi^2 \left(\chi^{\dagger} \chi \right) + \mu_1 \phi \left(\chi^{\dagger} \chi \right)$$


$$\epsilon_{eff} \propto Im \left(\mathcal{M}_{tree}^* \mathcal{M}_{loop} \right)$$

 $\epsilon_{eff} \sim \mathcal{O}(1)$ CP violation can be
realized with dimensionless
couplings taking their perturbative
values.

(I) < (I)

Deep Ghosh Asymmetric Dark Matter From Semi-annihilation

- The semi-annihilation process can simultaneously reduce the total number density of the DM sector as well as create a particle-antiparticle asymmetry.
- Maximal *CP*-violation can be achieved in a realistic model.

Backup Slide

æ