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LHC results able to confirm the validity of the SM, with no signatures of new physics.



Problems in the SM
Y

* SM fails to explain neutrino mass and ™.
mixings. A\

e SM doesn’'t have DM candidate.

* SM fails to explain observed baryon
asymmetry.




Who can be a DM ?

> Should be massive

~ Should be electrically neutral

- Should be present in early universe .
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> Should be stable or at least with half life greater than the
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Zoo of Dark Matter Candidates

neutrino
masses

1 am still
the king

| exist in QCD so
why
can't | be dark?

If he dies it's
my turn

| do not like to
interact with anyon

SR

A

Well..we never
know..

I'm still in the pic
you know...

I bad luck...
nightmare
scenario

| have to freeze-in
to survive

O

dark photon _u




“SUPER” WIMP Dark Matter is like,

g e

Conductor Going “SUPER” » | SUPER Conductor .




Q h?

What is “SUPER” in SUPER WIMP DM ?

€2 h?

x(=MT) x (= M/T)



SFTM to explain DM and neutrino mass

New Particles

Baryon Fields

Scalar F}gzis
On

Symmetry
Group Q| uby | diy Ly en | N =8 p1 | p2 | p3
SU(3). 3 3 3 1 1 1 1 1 1 1 1
SU(2)r 2 1 1 2 1 1 3 3 3 2 3
U(l)y 1/6 | 2/3 | —1/3 -1/2 | -1 0 0 0 0 1/2 0
Lo + | + | + + + | - |+ |+ | - + +

Table 1: Particle content and their corresponding charges under various symmetry groups.




The complete Lagrangian for the model:-

3
L=~Lsu+ Y Tr(piiv"Dupi] + N'iy* DN’ + Tr[(DyA)(D*A)] = V(dn, A)

i=1
(3,2) 3
— Y XjLidnp§ — Yoa (Tr[ps A]N' + he) = Y~ M, Trlpép;) — My NN’
(i.4)=(1,1) i=1

A
V(n,A) = —uidfon + 5 (6hon)” + KATTATA] + Aa(ATA) + A1 (6],6n) Tr [ATA]

A (TT[ATA])Q + A3 Tr[(ATA)Y] + My ¢! AAT by, + (ud] Ay, + h.c.)
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m—’ My > M, —> P is DM candidate.
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Feynmann diag. for the dominant production of N as well its late decay to DM.

Boltzmann Equation for NLOP ‘N’:

. B.ean to determine the
_ H;,—Np AB—Np N—s all \ q
Lfn = Z C +C +C ) distribution function of

221,2 ‘N’
LT
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Evolution of distribution function for ‘N’

gT°
TLN(T) — F

B(?“)Sfdﬁp fg fn(&ps )

This gives number density of ‘N’ at

| values of r.

where,

i B(T) _ ((}S(To))l/S _ (gs(jursc/r) )1/3

3 gs(T') gs(Ms. /1)
00 —T0° o001 01 1 10 100 13

(6



Results:-

Q, vh?
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Results:-
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= All the points in LP and RP satisfy relic density and BBN bound.

= InLP, M, <7 TeV, there is effect of phase space suppression arises from the decay of H,»p N

decay. To counter the suppression, the portal coupling is increased. This is in turn decreases the
life time of N which is shown in RP.
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BBN Constraint
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> All the points in LP and RP satisfy observed DM relix density.

> Lower value of YpA and sin a gets rules out from BBN due to excess hadronic injection to 16
plasma at late times.
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Results:-

Parameters Varied

107 < ¥ya < 107,100 GeV < My < 1800 GeV and 600 GeV < M, < 4500 GeV
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= Large portion of the region is already ruled out by the ATLAS 136 fb* data.

Substantial Annhilation Contribution:

My < M, and My, < M, + My
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= MATHUSLA can detect MeV to GeV range DM mass with the large coupling strength.



Conclusion:-

> The present work can solve two well-accepted SM problems namely a dark matter
candidate and the origin of the neutrino mass.

> We investigated different production mechanism for the production of DM.

> We also constrained our model paramters through BBN and found the model to
viable in large areas of parameter space.

> We investigated the possible detection prospects of FIMP DM at the MATHUSLA
detector
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